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EXECUTIVE SUMMARY

Introduction

The bulk-flow analysis results for this contract are incorporated in the following publications:

/,,(a) Childs, D. (1991a), "Fluid-Structure Interaction Forces at Pump-Impeller-
Shroud Surfaces for Axial Vibration Analysis," ASME Trans., Journal of
Vibration and Acoustics, Vol. 113, pp. 113-115, January 1991

(by  Childs, D. (1991b), "Centrifugal Acceleration Modes for Incompressible Fluid
v in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing,"
ASME Trans., Journal of Vibration and Acoustics, Vol. 113, pp. 209-218,
April 1991 ' S T

e, (c) _Williams, J. and Childs, D. (1992a), "Influence of Impeller Shroud Forces on
Pump Rotordynamics," ASME Trans., Journal of Vibration and Acoustics, Vol.
113, pp. 509-515, October 1991

V(df Childs, D. (1992b), "Pressure Oscillation in the Leakage Annulus Between a

Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure
Disturbances, ASME Trans., Journal of Fluids Engineering,Vol. 114, pp. 61-
67, March 1992

a5 (@) Cao, N. (1993), "éompressibility Effects on Rotor Forces in the Leakage Path
Between a Shrouded Pump Impeller and Its Housing," M.S. M.E. Thesis, Texas
A&M University, August 1993

Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are
reported separately. Two copies of these publications, were submitted as preliminary final
reports under the terms of this contract and are incorporated in this final report.”

The results of this study and the publications above can be summarized as follows:



Impeller Forces for Axial Vibration Analysis

Initial bulk-flow analyses for impellers considered radial reaction forces developed by
impellers due to lateral rotor motion Reference (a) above examined the axial reaction forces,
concluding that no resonance exists for axial motion. Methods are presented for calculating
stiffness, damping, and added mass coefficients for axial vibrations of turbopumps.

Centrifugal Acceleration Modes

Prior to this study, Childs (1989) calculated reaction force components for an impeller due to
precession of a pump rotor at nonsynchronous frequencies. His results showed unexpected
peaks in the force components which he ascribed to fluid "resonance”, arising from the
centrifugal-acceleration term in the momentum equation. Dr. Brennen at Cal Tech questioned
this terminology, suggesting that the term resonance could only be supported if an analysis
confirmed that the governing system actually had complex eigenvalues at or near the locations
of peak amplitudes. Childs (1991b) cited above, yielded roots and eigenvectors at the
predicted locations, confirming the prior predictions of fluid resonances.

Influence of Impeller Shroud Forces on Pump Rotordynamics

A question presented by the initial predictions that impeller reaction forces could contain
"peaks” was: How should radial and circumferential reaction forces be modeled if they can
not be modeled with stiffness, damping, and added-mass coefficients? Furthermore, what
influence do the predicted peaks have on rotordynamics? Williams and Childs (1992a)
developed linear and nonlinear analysis procedures for incorporating the frequency-dependent
radial and circumferential force coefficients into a rotordynamic analysis. Transient nonlinear
analysis used the predicted reaction forces directly as a function of the instantaneous
normalized precession frequency. Synchronous response due to imbalance proceeds directly,
replacing the radial and circumferential force coefficients with direct and cross-coupled
stiffness coefficients which are a function of running speed. Eigenanalysis is iterative, since
the stiffness coefficients depend on the precession frequency which is in turn defined by the
eigenvalue.

The predicted impeller-force peaks were shown to have a major influence on rotordynamics
for the model considered. However, the results are difficult to generalize to turbomachinery
rotordynamics.

Pressure Oscillation Excitation of the Flow in an Impeller Shrouded Annulus

The analyses cited above all considered reaction forces due to impeller shroud motion.

Childs (1992b) looked at the separate problem of pressure and velocity predictions in the
annulus due to precessing pressure oscillations at the discharge of the impeller. This analysis
was not aimed at rotordynamics . The impeller is assumed to be spinning but not precessing.



Pressure oscillation from the impeller discharge propagate down through the annulus and out
the exit wearing-ring seal. The analysis showed that multiple sharp resonances could be
excited in the annulus and that they typically resulted in peak pressure oscillations at or near
the exit wearing-ring seal. These results suggested a possible explanation for the internal-
cooling problem for the KEL-F exit seals of the SSME-HPFTP. However, the applicability of
the analysis was limited because an incompressible-flow model was used.

Compressibility Effects on Rotordynamics and Leakage and Pressure in an Impeller
Annulus

Nhai’s (1993) thesis extended previous models by incorporating fluid compressibility. Nhai
uses a barotropic model for which the viscosity and density are functions of the pressure
(only). Adding compressibility to the model means that acoustic modes can be generated in
addition to the "centrifugal-accelerations” modes which were present in earlier analyses.
Acoustic analysis normally discards perturbation terms which are included in Nhai’s general
perturbation analysis.

Nhai used the HPFTP first stage impeller for his analysis. He analyzed the exit wearing-ring
seal leakage-AP relationship using a code developed by Morrison et al. (1983). Fluid
properties were modeled via an NBS code, McCarthy et al. (1986).

Nhai examined the influence of compressibility on both rotordynamic characteristics of pumps
and pressure and flow oscillations within the annulus due to pressure perturbations of the
impeller exit. Concerning rotordynamic-response characteristics, Nhai’s analysis sought to
answer the following basic questions:

(a) What influence does compressibility have on the centrifugal-acceleration modes
predicted by earlier analyses?

(b)  What "acoustic” modes are predicted due to fluid compressibility?
The answers provided are as follows:

(a) Compressibility has a negligible influence on centrifugal-acceleration modes.
The result with and without compressibility are basically the same.

(b) Fluid compressibility yields acoustic modes, with the lowest mode appearing at
about twelve times running speed. This mode would be excited by rotor
precession.

Concerning pressure oscillations within the leakage annulus, Nhai used a precessing pressure
wave at the pump impeller exit for excitation with n diametral modes. Following Bolleter
(1988), n=n, (impeller vanes) - n, (diffuser vanes) = 24-13=11. Nhai’s analysis predicts sharp
peaks at precessional frequencies which are 6.5 and 7.8 times running speed. These modes
give predicted amplification factors from impeller discharge to the exit seal of the annulus



(inlet seal of the impeller) of 7.5 and 17.8. Either mode could reasonably explain the internal
melting observed in the HPFTP seals. The difficulty is that no excitation frequency is
predicted by existing theories near these resonant frequencies. Bolleter predicts excitation
frequencies at multiples of Q = n, w/n where ® is the running speed. Table 2 (page 38) of
Nhai’s thesis shows no excitation frequencies at or near the resonant frequencies.

To be brief, the present analysis only provides a plausible explanation for the melting-seal
situation, if the impeller provides the required excitation frequencies, and testing would be
necessary to confirm their presence or absence. '

REFERENCES

Bolleter, U., (1988), "Blade Passage Tones of Centrifugal Pumps,” Vibrations, Vol. 4, pp. 8-
13, September. .

Childs, D. W., (1989), "Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surface
for Rotordynamic Calculations," ASME Trans., Journal of Vibrations, Acoustics, Stress, and
Reliability in Design,Vol. 111, pp. 216-225, July.

McCarthy, R.D., (1986), "Thermophysical Properties of Fluids, MIPROPS 86," NBS Standard
Reference Data Base 12, Thermophysics Division, Center for Chemical Engineering, National
Bureau of Standards, Boulder, Colorado.

Morrison, G.L., Rhode, D.L., Kogan, K.C., Chi, D., and Demco, J., (1983) "Labyrinth Seals
for Incompressible Flow - Final Report," G.C. Marshall Space Flight Center, MSFC,
Alabama, 35812, Report Number SEAL-4-83, November.



\ Childs, D. i 1l i L R :
/ A H o @ H a V o r,;,,f,_, : _ﬁ F.E. I ,E,E :__E | ,E, i ﬁ, E,t :E.___ o i o ! r.._: __...,E.,
—— w o e oo ey (NN ...u m v LiiiaB P om0 % 1,!;, " ! ﬁ_ B ,E: , , ._a“t _,_....J peew




L




Reprinted from January 1991, Vol. 113, Journal of Vibration and Acoustics

//?.‘:Ur

St
G A2 3668

Fluid-Structure Interaction Forces
at Pump-impeller-Shroud Surfaces
for Axial Vibration Analysis

Solutions are presented for the dynamic axial forces developed by pump-impeller-
shroud surfaces. A bulk-flow model of the leakage path between the impeller and
the housing is used for the analysis consisting of the path-momentum, circumfer-
ential-momentum, and continuity equations. Shear stresses at the impelier and hous-
ing surfaces are modeled according to Hirs’ turbulent lubrication model. The
governing equations were developed earlier to examine lateral rotordynamic forces
developed by impellers. o -

D. W. Childs

Turbomachinery Laboratories,
Mechanical Enginegring Department,
Texas A&M University,

College Station, TX 77843

A perturbation expansion of the governing equations in the eccentricity ratio
yields a set of zeroth and first-order governing equations. The zeroth-order equations
define the leakage rale, velocity distributions, and the pressure distribution for a
centered impeller position. The first-order equations define the perturbations in the
velocity and pressure distributions due to axial motion of the impeller. Integration

of the perturbed pressure and shear-stress distribution acting on the rotor yields the
reaction forces acting on the impeller face.

Calculated results yield predictions of resonance peaks of the fluid within the
annulus formed by the impeller shroud and housing. Centrifugal acceleration terms
in the path-momentum equation are the physical origin of these unexpected pre-

dictions. For normalized tangential velocities at the inlet to the

annulus,

U, (0) = Upo (0)/Rpw of 0.5, the phenomenon is relatively minor. As g,(0) is in-
creased to 0.7, sharper peaks are predicted. The Sfluid modes are well damped in all

cases.

Numerical results

are presented for a double-suction single-stage pump which

indicate that the direct stiffness of the perturbed impeller shroud forces are negligible.
Small but appreciable added-mass and damping terms are developed which have a
modest influence on damping and peak-amplitude excitation frequency. The forces
only became important for pumps with very low axial natural frequencies in com-
parison to the running speed, viZ., ten percenl of the running speed or lower.

Introduction

Figure 1 illustrates an impeller stage of a multistage cen-
trifugal pump. Leakage along the front side of the impeller,
from impeller discharge to inlet, is restricted by a wear-ring
seal, while leakage along the back side is restricted by either
an interstage seal or a balance-discharge seal. The axial thrust
on the impeller is obviously of interest for structural integrity
of the pump and several investigators have presented analyses
and test results for the thrust versus various impeller param-
eters; Thomae and Stucki (1970), Lobanoff and Ross (1985).
Impellers are sometimes used directly as thrust-balancing ele-
ments; e.g., the main impeller of the Space Shuttle Main Engine
(SSME) High Pressure Oxygen Turbopump (HPOTP) is of
double-suction-entry design, and orifices at the inlet and exit
of the leakage path create the principal axial-thrust-balance
for the rotor. The leakage-path for the back side of the High

Contributed by the Technical Committee on Vibration and Sound for pub-

lication in the JOURNAL OF VIBRATION AND AcousTics. Manuscript received

January 1990.

Pressure Fuel Turbopump (HPFTP) is also used for axial thrust
balance.

From an axial vibration viewpoint, the change in the axial
thrust of an impeller which is used for axial-thrust balance is
normally modeled by a stiffness and damping coefficient, i.e.,

Fp=-KZ,-CZ, (1

where Z, is the axial change in position. The stiffness coefficient
K is the local slope in the thrust versus axjal position curve
and is nominally constant around the equilibrium position. In
the SSME turbopumps, the stiffness of the pump housing is
used in series with the slope of the thrust-axial-position curve
to calculate K. Damping primarily arises due to flow through
orifice restrictions.

An implicit assunption involved in the model of equation
(1) is that the natural frequencies of the fluid in the leakage
path are much higher than the pump’s running speed or the
axial vibration frequencies of the rotor. From a conventional
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Fig. 1 >lmpeller stage

acoustics viewpoint, this is certainly the case; however, Child’s
(1987, 1989) analysis of incompressible flow in the leakage
path revealed resonances associated with the centrifugal ac-
celeration of the inwardly-flowing fluid. The present investi-
gation of the dynamic axial thrust developed by the pump
impeller shroud is stimulated by the 1987 analysis and uses the
same flow model.

Geometry and Kinematics

Figure 1 illustrates the annular leakage paths along the front
and back sides of a typical shrouded impeller of a multistage
centrifugal pump. The present discussion concentrates on the

)

Fig. 2 Impeller surface geometry
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Fig. 3 Local attitude angle of impelier surface

flow and pressure fields within the forward annulus; however,
the analysis also applies 1o the rear annulus. As illustrated in
Fig. 2, the outer surface of the impeller is a surface of revo-
lution formed by rotating the curve R = R(Z) about the Z axis.
A point on the surface may be located by the coordinates
Z,R(Z),6. The length along the curve R(Z) from the initial

Nomenclature

nondimensional steady-
state amplitude due to L
harmonic excitation,

a =

leakage-path length,
defined by equation

defined by equation 3), (L) to harmonic excitation,
39) P=P/pV? = nondimensionalized defined by equation
A\, Ay, Ay, = coefficients introduced static fluid pressure 39)
Ai0.A2,43  in equation (18) and P = fluid static pressure € = perturbation coefficient
defined in the appendix (F/LY w = pump running speed
Ca = discharge coefficient r=R/R; = nondimensionalized ra- (T°h)
for the exit wear-ring dial coordinate w, = pump axial natural fre-
seal, introduced in R = radial coordinate (L) quency (771
equation (13) R; = initial (s = 0) radius (L) w,=w,/w = dimensionless pump
C; = initial (s=0) clearance R;=2HU,/v = path-velocity Reynolds axial natural frequency
’ (L) number {1 = axial excitation fre-
JS=0/w = dimensionless axial ex- s=8/L, = nondimensionalized quency (T )
citation frequency path length p = fluid density (M/L3)
JuJu.f; = dimensionless solution S = path coordinate intro- 6 = circumferential coordi-
coefficients introduced duced in equation (2), nate
in equation (25) (L) 0,0, = normalized friction
Jeofe = dimensionless force T=L,/V; = representative transit factors, defined by
coefficients introduced time for fluid travers- equation (15)
in equation (31) ing the leakage path T=w! = nondimensionalized
Fy = nominal axial reaction (n - time
force defined by equa- u,=U,/V, = nondimensionalized £ = entrance-loss coeffi-
tion (30) path fluid velocity cient introduced in
Fz = axial reaction force (F) ug=Uy/Rw = nondimensionalized equation (11)
h=H/C, = nondimensionalized circumferential fluid 6=A/C; = nondimensionalized ax-
clearance velocity ial impeller displace-
H = clearance between im- V; = initial (s=0) fluid ve- ment
peller shroud and locity 4 = axial impeller displace-
housing (L) ¥ = steady-state phase due ment (L)

Vo rrmwm ~ LR 0 ¥ L] SONS S I ot



point R,,Z; to an arbitrary point R,Z is denoted by S and

defined by
R\ 2 SR (dZ)2
du= |, 1+ iR du 93}

In the equations which follow, the path coordinate S and
angular coordinate § are used as independent spatial variables.
The coordinates Z,R defining the impeller surface are expressed
as parametric functions of §, i.e., Z(S), R(S). The length of
the leakage path along the impeller face is defined by

Z;i+L 2
i dR
L= Sli 1+ (E) du 3

Trigonometric functions of the angle v, illustrated in Fig.
3, are defined as follows

Ryl oy R
az VT as ds
The clearance between the impeller and the housing is denoted
as H(S,8,n, with the time dependency introduced by impeller
motion. In the centered position, the clearance function de-

pends only on § and is denoted by H,(S). Displacement of the
impeller in the Z direction by the differential A yields

tany= — siny= — 4)

H(S.0.0)= HAS) - Asing = H(S) + AoSas

Governing Equations
Returning to Fig. 2, the path coordinate S and circumfer-

ential coordinate R6 are used to locate a fluid differential
element of thickness H(S,6,7). From Childs (1987), the con-
tinuity equation can be stated

oH 9 19 dR

% +£(U’H)+R %(U‘,HH (g)EEU,—O
where U, and U, are the path and circumferential bulk-velocity

components, respectively. Also from Childs (1987), the path
and circumferential momentum equations are stated

aP L2 dR aU. aU, U, aU,
_HYE . g2 9Us  9Ys Ve T
a5~ PHR as Tt Tt PH G e R+BSU‘)
H P aU, 9U, Us Uj U,U,&R)
——— =7 4 Ts + =8 =t — L A Rt
R gt PH G Y 5 R s 0T R8s

Following Hirs’ approach (1973), the wall shear-stress defi-
nitions in these equations can be stated

my+ 1

re=SOURRIU + (U UYT *

mr+1

n,="3’pU§R,"'l 1+[(Us— R}/ UJP) 2 ©6)

ms+ |

ns
rer =P UsURTL + Uy U] ?

mr+1

nr
Tor = ?oUs(Uo- RWRT (1+[(Up— R}/ UJ) 2

where
R,=2HU/v Y]

Nondimensionalization and Perturbation Analysis

The governing equations define the bulk-flow velocity com-
ponents (U;, Up) and the pressure P as a function of the co-

ordinates (R@, S) and time, [. They are conveniently
nondimensionalized by introducing the following variables
u,=U/V,, up=Us/Ru, p=P/pV?
h=H/C;, §$=8/Lg r=R/R; (8)
r=owl, b=V/Rw, T=LJ/V,
The objective of the present analysis is to examine the changes
in (u;, ug, p) due to changes in the clearance function k(,s,1)
caused by small axial motion of the impeller within its housing.
To this end, the governing equations are expanded in the per-
turbation variables
h= ho + éh‘
P=Pot €D )
where e=e/C; is the perturbation parameter. The following
equations result:

U= uw+éu,1,
Ug = Ug, + Elg)s

Zeroth-Order Equations
(@) Path-Momentum Equation

dp, l(dr) u, [(a,+ a,) { dh, | dr‘J 5
Lo_ (=)= 0%y _— e - |l = 10
% r\as) L\ 2 ) Tk, as ;2 1e=0 (100)
(b) Circumferential-Momentum Equation

dug, Ug, dr

—d%+—:‘-’ o+ ooy = 1)+ otic)/2=0 (10b)
() Continuity Equation

rhyit=1 (10¢)

L. . L. du
The continuity equation has been used to eliminate —df from

equation (104). The momentum equations define the pressure
and velocity distributions for a centered impeller position. They
are coupled and nonlinear and must be solved iteratively. The
initial condition for uy,(0) is obtained from the exit flow con-
dition of the impeller. The inlet and discharge pressure of the
impeller are known and serve, respectively, as the exit (P,) and
supply (P,) pressures for the leakage flow along the impeller
face. The inlet condition for p, is obtained from the inlet
relationship -

Ps_Po(Ov01’)=p(l + E)U_zo(ovo’r)/z (l 1)
From this relationship, the zeroth-order pressure relationship
is
Pok0) = P/pV} = (1 +£)u(0)/2 (12)
The wear-ring seal at the leakage-path exit also provides a
restriction, yielding a relationship of the form

P(L.8,8) ~ Pe=5Ca V(L0 (13)
First-Order Equations
(a) Path-Momentum Equation
ap u du au
—a—s‘-+ Ug A + U Ass + [wTa—af‘ + wTJ—l-:_—" -—a-?;-'- + u,,,—a—;l] =mA,
(14a)

(b) Circumferential- Momentum Equation
L, 13 ' h

p
b-l_?—,- 7 ‘agl"' g Azp+ s Az

uy Moo Ols | Dyl _ :
+[w7'aaf +w1“r g =i (140)

©) Continuity Equation

duy  oT duo (145+L& -
as r 80 “\rds h,ds/
hyu,, dh, 1( ah, 60 OR, h,
T Earmbatrat £ e vy -
e u,,,ds+w7”r ao“"’jar) (140)
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Fig. 4 Nominal configuration of test impeller

Most of the parameters of these equations are defined in Ap-
pendix A. The quantities o, and o, are defined by

0= (LS/HO)ASS G, = (L:/Ho))‘r (15)
where A, and A, are dimensionless stator and rotor friction
factors defined by

_m.\‘_H
>‘S= ’BR;’;:U + (uﬂa/b“:o)zl z

mr+ 1

A =RrRG {1 + [(ug, — r)/bu,)?) 2
From equations (5) and (8), the perturbation clearance func-

tion is
5 (R\dr A
""e(L,)ds' a‘c,-

WoE(R) L o
as e\L/ds® 30

First-Order Equation Solutions. For axial excitation, the #
partial derivatives of equations (14) are eliminated. The time

variation can be eliminated by assuming the following har-
monic solutions for the clearance excitation

(16)

Hence,

8=doe™ = 8ge” an
and dependent variables
pi=pe?, uy=i,el, up =igel (18)
where
f[=Qw, wt=r (19)

Note that p,, 4y, and dg, are now complex variables. Sub-
stitution into equations (14) yields

Journal of Vibration and Acoustics

u u &
d _sl ':l 5
E u_al +[A4] u_ox =(‘€g) &2 (20
P I 4 &3
where
B 0 0
[A]= A/ ug, (A% +/Q7N/u, 0 21
Ay —u B+ QT Az 0
QT dr
& ATy
R A.,)dr
={— -{— )= 22
& (L,) ) ds (22)
A ﬂ+u +ju ﬂi’
&3 l:ds sol’2+ ] :oho dS
and
u, (d*r 1 dh,dr ldr 1 dh
F=-2({—__ "0 =——4——2 2
2 h,,(dsz h, ds ds)’ rds h, ds 23

The following three boundary conditions are specified for the
solution of equation (20):
(@) The entrance-perturbation, circumferential velocity is
zero, i.e., -
ug(0)=0 (24a)
(b) The entrance loss at the seal entrance is defined by equa-
tion (11), and the corresponding perturbation-variable rela-
tionship is
P210)= — (1 + &), (0) (24b)
(c) The relationship at the exit is provided by equation (13)
and yields the following perturbation relationship

JANUARY 1991 Vnl 112/ 114
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Table 1_ Zeroth-order-solution results; C,= 3.5 mm

us0(0) 0.5 0.6 0.7
Cae 1.655 1.690 1.731
m (kg/sec) 4.784 4.391 3973
F, x 107(N) 225 2.15 2.04

(1) = Catso( Dt (1) (240)
The value for C, depends on the wear-ring seal geometry.
Solution of equation (20) for the boundary conditions of equa-
tions (24) is relatively straightforward using a transition-matrix
approach (Meirovitch, 1986). The solution can be stated

Jofgel -

112/ Vol. 113, JANUARY 1991

Tabie 2 Asymptotic coefficients from Figs.5and 6

Ugo K, x 10™¢ M, Cq x 107

- Nim Kg Kg
0.5 648 5.61 809
0.6 6.06 5.63 a1l
0.7 13.6 5.68 1.05

Reaction Force. From Fig. 4, the axial differential force
component on a differential-impeller surface area can be stated

dFz= — (Psiny + 7,c0sy)Rd0dS 26)

The zeroth and first-order force components are obtained by
substituting for P and 7., in equation (26). From equation (6),
the perturbation shear stresses can be stated

o1 = 0 VH(Byytisy + Balig + Bshi) @n

Transactions of the ASME



The coefficients of these equations are defined in the appendix.
The zeroth and first-order forces are defined by

1
dr L\ dz
— 2 287 £yaz
FZD—ZTTR,' ED [pl/idspo+ (R‘) drTrso]rds (28)
and
Fa1=Fai+ jFz1c = Fofi + jf1)8 (29)
where
Fy=nR}AP= xR CpV? (30)
2 (' dr
Ji= ajo [fkd_s
L L L? dz]
+ (RI)B:L[IC"’ (R‘)lefk_ (RL‘)BSJdS rds (31)

2('[, dr (L L
fﬂ:ajo [fkd—:"' (E') Bstl:"’ (l?,) lefz.s}’ds

Numerical Results. Figure 4 illustrates the pump-impeller
and shroud geometry used by Bolleter et al. (1987) in their test
program for radial force coefficients. Their pump uses a vaned
diffuser. Their tests were at best efficiency point (BEP) with
the pump running at 2000 rpm, while developing 68m of head
and 130 I/sec of flow rate. The impeller has seven blades and
an impeller exit angle of 22.5 deg. The test fluid is water at
80°F. For the present study, AP across the impeller is assumed
to be 70 percent of the total head rise of the stage. Based on
pitot-tube measurements, impeller exit tangential velocity is
about 50 percent of the impeller discharge surface velocity;
hence, ug(0)=0.5.

Both walls of the annulus are assumed to be smooth and
represented by Yamada’s (1962) test data; mr=ms= —0.25,
nr=ns=0.079. The inlet loss for the annulus, £, is assumed
to be 0.1. The discharge coefficient for the seal is calculated
iteratively as follows. With an assumed C,,, equations (10),
(11), and (12) were used to calculate the leakage through the
impeller annulus and the pressure and tangential-velocity up-
stream of the seal. The seal is then analyzed (with the same
equations) using the calculated seal inlet pressure and tangen-
tial velocity to determine leakage and C,,. The iteration con-
tinues until the leakage predictions for the exit seal and the
impelier annulus agree. Table ! provides zeroth-order solu-
tions.

Figures 5 and 6 illustrate f; and £, versus f for ug(0)=0.5,
0.6, and 0.7. The uy(0) = 0.5 curves are comparatively smooth;
the up(0)=0.6, 0.7 curves show evidence of fluid resonances
similar to those obtained earlier by Childs (1987). Specifically,
in the absence of fluid resonances, the expected results for S
would be a parabola without the predicted fluctuation in the
neighborhood of f=0.25. Further, the expected result for f,
would be a constant without the low-frequency fluctuations.

The functions f;, f. are nondimensionalized frequency-de-
pendent stiffness and damping coefficients. To develop a phys-
ical model for the axial reaction forces defined by these curves,
the fi(f) curves will be reviewed first. All of the Ji curves
demonstrate a quadratic asymptote with the following fre-
quency-domain model

SidlN=-K+Mf?, (32)
which implies the time-domain reaction-force model
Fue=~(K,Z,+M,Z,) 33
where
K,=KF,/C,, M,= MF,/Cx? (34)

The physical coefficients obtained from a curve fit of the
asymptotic solutions in Fig. 5 yield the physical coefficients
of Table 2.
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The stiffness values are negligibly small in comparison to
the axial stiffness which would center the pump rotor either
through a thrust bearing or balance-piston arrangements. The
mass coefficient is small but appreciable in comparison to the
impeller mass. This ‘‘added mass”’ contribution to the impeller
rotor has not previously been accounted for in axial vibration
analyses of pumps.

The /. curves of Fig. 6 can be viewed as nondimensionalized
frequency-dependent damping coefficients. The asymptotic
behavior of these curves (for high values of J) shows an un-
expected, approximately-linear, increase in damping with in-
creasing frequency. The asymptotic results are curvefitted by
the linear model

fH=C,-¢f 35)
The linear dependence of f, on C yields the time-domain re-
action-force model

Fou=-CA0,2,, 0,=12/2,12 (36)

where

C,=CF,/Cw?
Values of C, are provided in Table 2. Physically meaningful
values for damping are obtained by multiplying C, by @, e.g.,
the nominal damping value for @ =w =209 rd/sec is about 209
N sec/m (1.2 Ib sec/in) which is significant.
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Modeling Annular Forces for Axial-Vibration Analysis. The

transient model for axial vibrations, including the impeller
forces, can be stated
Mo Z,+(Cpo— FIZ,+ (Ko~ F)Z,=Fe(1) 37
where M,,, C,,, and K, are the nominal mass, damping, and
stiffness coefficients, F.(7) is the external excitation force, and
Fc(fa) =ft(fa)Fo/th; Fk(fa) =fk(fa)Fo/CA (38)
Je=Q/w

The model of equation (2) has moved the impeller-shroud
reaction force from the right-hand side of the equation to the
left-hand side of the equation. The force is now modeled as
frequency-dependent stiffness and damping coefficients, which
combine directly with the nominal, mechanical, stiffness and
damping coefficients.

For an external harmonic excitation force of the form
F,=F,2™, the steady-state solution Z,,=Ae® is defined by
a=lale¥=A/(F../K;)

= &/ ([@3(1 - F) — S +if0,2t = fon)) (39)
where

“’3|= zo/Mzo; 2w, = Czo/Mzo 40
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The physical example used to demonstrate the solution of
equation (39) is a double-suction single-stage pump with the
impeller of Fig. 4 and the following physical data:

M., = 100 kg, £=0.05, w=2000 rpm=209 rd/sec

With a double-suction design, the reaction force from the
impeller face is doubled. Figures 7 and 8 illustrate solutions
to equation (39) for &,=0.5 and 1.5 times the running speed
for no impeller forces and impeller forces corresponding to
ug(0)=0.5, 0.6, and 0.7. The magnitude and phase of a are
presented and demonstrate that the impeller forces provide a
modest amount of additional damping and slightly displace
the peak-amplitude-frequency location. Although not pre-
sented here, the impeller forces did cause significant changes
in the steady state response when &, was reduced to unreal-
istically low values on the order of 0.1.

Summary and Conclusions

An analysis has been developed and predictions presented
for the axial forces developed on a pump impeller shroud. The
force coefficients are reduced to frequency-dependent stiffness
and damping coefficients. Fluid resonances are evident in these
results comparable to the rotordynamic-coefficient analysis
results of Childs (1987). The asymptotic expansion of these
coefficients yield negligible stiffness values and small but ap-
preciable added mass and damping coefficients.

Frequency-response analysis of a double-suction single-stage
pump impeller indicates that the impeller shroud forces provide
a little additional damping and can modestly move the damped
natural frequency of the system for pumps with axial natural
frequencies on the order of 0.5 to 1.5 times the running speed.
The impeller-shroud forces can only become really significant
for natural frequencies that are much lower than the running
speed, viz., one tenth of the running speed or lower.
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APPENDIX A

Perturbation Coefficients
Ap=lo(1-ms)+o(l - mrul,/2h,

2‘:00 Z_;/bz + [omr+ 1)B, + a,(ms + 1)B s/ 2

="
duy,
Ay="E+[@+ mr)a, + (2 + ms)oglus,/2

—[(1 + m)oB,(ugo— 1)+ (1 + ms)oBitgo} /2
ZAIO = uso[(] - mr)(uﬂo- I’)G, + (1 - ms)“ﬂoas]/ha

Transactions of the ASME



2435 =u,,(0,+ 0,) + o, (mr + 1)(ug, — 1B,

u,, dr

+ U_,(ms+ I)ugoﬁl + 2';' E

2A35 = ar(uﬁo - r)[mr - (l + mr)Bo(uﬂo - F)/llm]
V + asuﬂo[ms - (l + ms)ﬁluﬂa/uso]

/30 = (“oo - ’)/bzuso{ I+ [("00 - r)/busolz }

Bi= u&a/bzuso“ + (uao/buso)?]

7.9 Perturbation Coefficients
By = A1+ mr)(ug, — )1 — B,(ugo— r)/u,,)/2b
By = Ny + (1 + mr)(ug, — r)B,)/2b
Byy = Nmr(ug, — ryu,,/2bh,
7rs Perturbation Coefficients
B =M(2+mryus,— (1+mr)By(ugo—r)/2)
B, =N\(1+mr)g,u,,/2
Bsy=Nmrii,/2h,
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Centrifugal-Acceleration Modes for
Incompressible Fluid in the
Leakage Annulus Between a
Shrouded Pump Impeller and Its
Housing |

An analysis is presented for the perturbed flow in the leakage path between a
shrouded-pump impeller and its housing. A bulk-flow model is used for the analysis
consisting of the path-momentum, circumferential-momentum, and continuity equa-

- tions. Shear stress at the impeller and housing surfaces are modeled according 10
Hirs’ turbulent lubrication model. The governing equations have been used earlier
to examine rotordynamic reaction forces developed by lateral and axial impeller
motion.

A perturbation expansion of the governing equations in the eccentricity ratio
yields a set of zeroth and first-order governing equations. The zeroth-order equations
define the leakage rate, and the velocity and pressure distributions for a centered
impeller position. The first-order equations define the perturbations in the velocity
and pressure distributions due to axial or lateral motion of the impeller. Prior analyses
by the author of the perturbation equation have examined the reaction forces on
the shroud due to rotor motion. These analyses have produced ‘‘resonance’’ phe-
nomena associated with the centrifugai-acceleration body forces in the fluid field.

In the present analysis, an algorithm is developed and demonstrated for calculating
the complex eigenvalues and eigenvectors associated with these resonances. First-
and second-natural-frequency eigensolutions are presented for mode shapes corre-
sponding to lateral excitation. First-natural-frequency eigensolutions are also pre-
sented for mode shapes corresponding to axial excitation.

D. W. Childs

Turbomachinery Laboratories,
Mechanical Engineering Department,
Texas A&M University,

College Station, TX 77843

Introduction

Figure 1 illustrates an impeller stage of a multistage cen-
trifugal pump. Leakage along the front side of the impeller,

cients due to impeller motion but have also predicted ‘‘reso-
nance” phenomena, which are caused by the centrifugal-

from impeller discharge to inlet, is restricted by a wear-ring
seal, while leakage along the back side is restricted by either
an interstage seal or a balance-piston discharge seal. The pres-
ent analysis considers perturbed flow in the leakage paths be-
tween the impeller shroud surface and its housing.

Prior analyses by the author of those annulli have been
concerned with lateral (1987, 1989) and axial (1990) reaction
forces developed by the impeller shrouds as a consequence of
impeller motion. These analyses have been based on ‘‘bulk-
flow” models which neglect the variation in the dependent
variables across the fluid film. The model consists of the path
and circumferential momentum equations and the continuity
equations.

The analyses cited have yielded force and moment coeffi-

* Contributed by the Technical Committee on Vibration and Sound for pub-
lication in the JOURNAL OF VIBRATION AND AcoUSTICS. Manuscript received
January 1990.
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acceleration body forces present in the path momentum equa-
tions. In the present analysis, an algorithm is developed and
demonstrated for calculating the complex eigenvalues and ei-
genvectors associated with the fluid resonances.

Geometry and Kinematics

Figure 1 illustrates the annular leakage paths along the front
and back sides of a typical shrouded impeller of a multistage
centrifugal pump. The present discussion concentrates on the
flow and pressure fields within the forward annulus; however,
the analysis also applies to the rear annulus. As illustrated in
Fig. 2, the outer surface of the impeller is a surface of revo-
lution formed by rotating the curve R = R(Z) about the Z axis.
A point on the surface may be located by the coordinates Z,
R(2),6. The length along the curve R(Z) from the initial point
R;, Z; to an arbitrary point R,Z is denoted by S and defined

by
APRIL 1991, Vol. 113/ 209
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Fig. 1 Impeller stage
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In the equations which follow, the path coordinate S and
angular coordinate § are used as independent spatial variables.

N

Fig. 2 Impeller surface geometry

The coordinates Z,R defining the impeller surface are expressed
as parametric functions of S, i.e., Z(S),R(S). The length of
the leakage path along the impeller face is defined by

Z;+L dR 2
L= L, 1+ d—Z) du @

Trigonometric functions of the angle v, illustrated in figure 2,
are defined as follows

tany = Q cOos __d_Z siny = Q (3)

Y= "4z "Tgs T s

The clearance between the impeller and the housing is de-

noted as H(S,0,7), with the time dependency introduced by

impeller motion. In the centered position, the clearance func-

tion depends only on S and is denoted by H,(S). Displacement

Nomenclature

Als’Ab:Ait
Agr Az Az

Jrq.foq

h=H/C;
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~ coefficients

intro-
duced in equation
(14) and defined in
the appendix
discharge coefficient
for the exit wear-
ring seal, introduced
in equation (13)
initial (s = 0) radial
clearance (L)

exit seal clearance
w

dimensionless exci-
tation frequency
nondimensional
stiffness and damp-
ing coefficients for
the impeller corre-
sponding to axial
motion at the non-
dimensional fre-
quency f=0/w
nondimensional, ra-
dial, and circumfer-
ential impeller-force
coefficients corre-
sponding to a circu-
lar orbit at the
nondimensional fre-
quency f=Q/w
nondimensionalized
clearance

clearance between
impeller shroud and
housing (L) -
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p=PloV}

r=R/R,'

R,=2HU,/v

s=8/L,

T=L/V,

u=Uy/V,
Ug= UO/R,‘I)

a=0+jwy

leakage-path length,

perturbation coeffi-
cient

defined by equation @ = g;fnl)p running speed
2), (L o
flo)nc(lin)lensionalizcd o= g‘c_l};mon frequency
tatic fluid pressure . .
;uidcstatic gressure p = fluid density (M/L’)
(F/LY 8 = circumferential co-
nondimensionalized _ ordxna;; fricti
radial coordinate g,,0, = normalized friction
radial coordinate factors, defined by
) equation (I5)
initial (s= o) radius 7=w! = nondimensionalized
time

(9]

i . . £ = entrance-loss coeffi-
path-velacity Rey cient introduced in

. . . equation (11)
;:t“,f‘l:;"g’:;‘°"ah’°d A = axial impeller dis-
path coordinate in- _ p!acem'eml(L)
troduced in equa- o={w, = dimensionless real
tion (1), (L) part of complex_cz-
representative gen‘\jfalue for fluid

LI . mode
transit time for fluid ¢ = damping factor

traversing the leak-
age path (1)
nondimensionalized
path fluid velocity

wy=wN I1-¢2

from complex eigen-
value

dimensionless imagi-

nondimensionalized nary part of com-
circumferential fluid plex eigenvalue for
velocity fluid mode (damped
initial (s=0) rotor natural frequency)
velocity w, = dimensionless un-

dimensionless com-
plex eigenvalue for
fluid mode

damped natural fre-
quency from :
complex eigenvalue
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of the impeller in the X and Y directions obviously causes a
change in the clearance function, as does a change in the axial
position defined by A(¢). For small displacements and rotations
of the impeller, the clearance function can be stated

H(S,8,f) = H,(s) — Xcost — Ysind — Asiny 4)

Observe in this equation that H, and siny are solely functions
of S, while X, Y, and A are functions only of /.

The clearance function provides the excitation for the re-
action forces developed in earlier analyses. Its importance for
the present study concerns the nature of the assumed solution
in seeking eigen solutions.

Governing Equations

Returning to Fig. 2, the path coordinate S and circumfer-
ential coordinate R are used to locate a fluid differential
element of thickness H(S,8,f). From Childs (1987), the con-
tinuity equation can be stated

oH 48 1 4 dR

o0 T as U+ 5g (UefD+ (2’) 250"
where U, and U, are the path and circumferential bulk-velocity
components, respectively. The path and circumferential mo-
mentum equations are stated

(5a)

3P WdR . (3U, 8U, U, aU,
CHE b7, pHE S s D, O
a5 st TeT PR ds+"H(ar " R+aSU’>
(5b)
H P aU, Uy Uy . Us U,U,aR)
_—— —— s, 0 F = s
R % ”‘”"’*”H(a:*ao R s TR 35
(5¢)

_ Following Hirs’ approach (1973), the wall shear-stress defi-
" Titions in these equations can be stated

ms+1

e 1 =ZpURPL+ (U U 2

mr+1

Ty =5 pUiRI" (1 +[(Up= Ru)/ U} ©)

ms+ 1

ns
7o = 2P UsURS[1 + (Us/ Uy ?

mr+1

o= 5pULUs =~ RORT" 1+ [(Up= Ra)/ U} 2

where
R,=2HU/v @)

Nondimensionalization and Perturbation Analysis

The governing equations define the bulk-flow velocity com-
ponents (U,, Up) and the pressure P as a function of the co-
ordinates (R6,5) and time, ¢. They are conveniently
nondimensionalized by introducing the following variables

u,=U/V,, uy=Uy/Rw, p=P/pV}

h=H/C,, s5=8/1I, r=R/R; (8)

r=wl, b=V/Rw, T=LJ/V;
The objective of the present analysis is to examine the changes
in (u,, ug, p) due to changes in the clearance function h(@, s,
f) caused by small motion of the impeller within its housing.
To this end, the governing equations are expanded in the per-
turbation variables

U, =Ug +etty, h=h,+eh
Up=Ug, + €Uy, P=Pot+ €D ¢)]

were e=e/C; is the perturbation parameter. The following
equations result:

Zeroth-Order Equations
(@) Path-Momentum Equations

i&o_l(ﬂ’)_“i [("r’f”s) 1 dh, ld_’] 2 _
s r\as) 2 I\ ) e ras/te=? (100

(b) Circumferential-Momentum Equation

dug, U, dr

s T s + [0 tgo— r) + a5tg,)/2=0 (10b)
(c) Continuity Equation
) rhgug, =1 (10c)
The quantities ¢, and o, are defined by
a,=(Ly/Ho\s,  0,=(L/H\, an

where A, and M, are dimensionless stator and rotor friction
factors defined by

ms+1
A= nsRG(1+ (uﬂo/bu:o)z] 2
mr+1

N=nrRE {1+ [(ugo— 1)/ bugel’) *

du,,

The continuity equation has been used to eliminate from

equation (10g). The momentum equations define the pressure
and velocity distributions for a centered impeller position. They
are coupled and nonlinear and must be solved iteratively. The
initial condition for u,(0) is obtained from the exit flow con-
dition of the impeller. The inlet and discharge pressure of the
impeller are known and serve, respectively, as the exit (P,) and
supply (P,) pressures for the leakage flow along the impeller
face. The inlet condition for p, is obtained from the inlet

- relationship

P,— P,(0,8,0)=p(1 + £)U%,(0,0,1)/2

From this relationship, the zeroth-order pressure relationship
is

Po0)=P/pVi— (1 +5)ulo(0)/2 (12)

The wear-ring seal at the leakage-path exit also provides a
restriction, yielding a relationship of the form

P(L,.0,)-P,= gc,,,U}(L,,G,t) (13)

¥

R(S)

[ ]

Z(5)

Fig. 3 Local attitude angle of impelier surface
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First-Order Equations
(@) Path-Momentum Equation

ap u 50 Ol du;,
a l+ug,Ab+u,,A3,+[ a;l'*‘wTu_ro—a‘eil‘ +uso a; _hlAls
(14a)
(6) Circumferential-Momentum Equation
L. 1dp
b_ - a—el + u,lAzg + UﬂA;g

[ Ta_llo1+ 7”00 auox
r

asl] =hA, (14b)

(c) Continuity Equation

2y,_,+wT6ug| (l dr+_l_ dha)
as r a6 rds h, ds
,u,o dh, 1 ( ahl 90 ah, ah)
— 14
W Tds h, Yso'ds T”r ar (140)

New coefficients in these equations are defined in Appendix
A.

Eigen Solutions Corresponding to Lateral Excitation
The first-order equations (14) define the'ﬁrst-order pertur-
bations u,(s,8,7), ug(s,8,7), and p(s,0,7) resulting from the
perturbed clearance function 4,(7). From equations (4) and
(8), A, can be stated
ehy = h\(s,7)cosd + h (s, 7)sinf (15)
The 8 dependency of the dependent variables is eliminated by
assuming the comparable, separation-of-variable, solution for-
mat '
| Us) = Uy £0S0 + Uy Sinb
Up; = Upy £OSO + Uy, SN
= p)c0sb + p,siné
Substituting into equations (14) and equating like coefficients
of cosf and sin@ yields six equations in the independent varl-
ables s,7. By introducing the complex variables
Uy = Ui+ JUgys, Uy = Ug+ Jllps
21=plc+.jpl:v ﬂl _hlt+-/h|.ﬂ {(amn
these six real equations are reduced to the following three
complex equations in 5 and 7.

(16)

0, u . ou
—aESl+£9|Als+l_‘:IAJJ+ [wTéa-TLl =Jw %E:l +um—£{l =£1AI:

b/L
-5 (E’) Di+UpAy+uqAs

dug,
[WTB —Jjw —u,,+u,,, 3s ] hlA]g (18%)

duy uTu u, ldr 1 dh)
as Tt s o
u,dho T u,a] u,, 0h, wT dh,
+ — s — —— s il
h[m g h r ) h, o m, o (89

The time dependency of equations (18) is eliminated by as-
sumning a harmonic solution of the form

=h|0‘~’m’ g = asle{hv Eﬂ=ﬁne‘7’» o =ﬁleifr: S=%Vw (19
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Fig. 4 Nondimensional rotordynamic force coefficients: (s) tangentlal-
force coefficient, (b) radial-force coefficients

The assumed clearance function A(f) correspond to circular
orbital motion of the impeller at the precession frequency (1.
Substitution from equation (19) into equation (18) yields the
three complex ordinary differential equations in s of the form

d l_‘sl usl
AU s (4] Uu ( )
F 4

The parameters gy, £;, g2, and g; on the nght hand side are
defined by Childs (1987). The right hand side is important for
the forced solution but irrelevant for eigenanalysis, which con-
cerns the homogeneous solution.

The following three boundary conditions are specified for
the solution of equation (20):

(a) The entrance- pcrturbatlon, cxrcumferenual velocity is
zero, i.e.,

20)

) ug(0)=0 la)

(b) The entrance loss at the seal entrance is defined by equa-

tion (12), and the corresponding perturbation-variable rela-
tionship is

P1(0)= — (1 +§)uy,(0) (21b)

(c) The relationship at the exit is provided by equation (13)
and yields the following perturbation relationship

(1) = Cpetto()tisy(1) 2lo)

The value for C,, depends on the wear-ring seal geometry.
Figure 4 illustrates the radial and tangential reaction-force
components for solutions to equation (20) from Childs (1989).

The three solutions for each frame of the figure correspond
to three inlet tangential velocity ratios ugg(0). If the centrifugal
acceleration term is dropped from the analysis, the fy, curve
becomes a straight line and the f,, curve becomes a parabola,
which are the expected solutions for liquid, constant-radius,
annular seals; Childs and Kim (1985). The sharp deviation
from the expected linear and parabolic solution forms for these
curves in the ‘“‘resonance’’ phenomenon cited in the introduc-
tion, and it is eliminated if the centrifugal acceleration term
is dropped. The question of interest here is: ‘‘If the solutions



of Fig. 4 arise from a ‘resonance’ of the fluid, how are the
associated eigenvalues and eigenvectors to be calculated, and
what do the mode shapes look like?”’

The first part of the question is answered by reviewing the
solution approach to equation (20) which was used in gener-
ating the results of Fig 4. Following normal transition-matrix
approaches (Meirovitch, 1986), the solution to equation (20)
can be stated

[w(s)] = [BE) {wo] + (U8)]; (W) =(uy, g, P (22)
where [®] is the transition matrix, (w,) is the vector of initial
conditions, and (v) is the particular solution obtained for zero
initial conditions. [®] is obtained by solving the homogeneous
version of equation (20) three times for the initial conditions
(1,0,0), (0,1,0), and (0,0,1). One of the three initial conditions
of equation (22) is given; viz., #,(0) =0. Equation (214) pro-
vides one relationship between the remaining unknown initial
conditions p,(0) and u,,(0). The final relationship between
these variables is obtained by evaluating equation (22) at s=1
to obtain

(1) =&, (Duy(0) + &13(1)p1(0) + vi(1)
Pi(1) = &5, (Du1(0) + $3(1D)p1(0) + vy(1), 23)

and substituting into equation (21¢). The resulting set of equa-
tions for the unknown initial conditions can be stated

[ (1+%) 1 ] {&,,(0)}
$31(1) = Cretig(l)  $35(1) — Cruo(1) 1.71(0)
: 0
“{—v,(n+cd,u,o(1)v,<1)] @4

For forced response, the right-hand side is nonzero, and the
missing initial conditions are obtained by inverting the coef-
ficient matrix.

The resonance peaks in Fig. 4 appear when f is near the
imaginary part of the complex eigenvalue. To obtain the ei-
genvalue, the harmonic solution of equation (19) is replaced
by the general solution format

U =Uge™, Ug =1Ug€™, p =pe
where «a is both a complex number and the desired eigenvalue.

Substitution into equations (18) yields the following definition
for the coefficient matrix of equation (20)

B -j“’TT 0
[A4] = Asp/u (A +,TN/uy —f b (li)
= 30/ Uy 20t/ 50 jrzT,o R
wT
Ay —uggB+TT A;_,+j—r—u,o 0
@3
where
1dr 1 dho) ,
= (- Z e = - 26
(rds+ho ) T = wla — juge/r) (26)

Now, the differential equations and their homogeneous so-
lutions are a function of the desired eigenvalue a, and the
eigenvalue is found when the determinant of the coefficient
matrix of equation (24) is zero.

The following approach was used to solve for the complex
cigenvalues:
(a) An initial value, ay, is guessed based on the results of Fig.
4; viz., o, =0+ jf, where f, yields a peak on the fy, curve.
(b) The homogeneous version of equation (20) is solved to
obtain [®], and the determinant

De = (1+§)[®35(1) - Catto(D) = $51(1) + Cuetto(1)  (27)
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is calculated at ap and o; = o[l +5(1 + )] to obtain De, and
De,; 6 is a small parameter. -

(c) The secant rule is then used to calculate the next estimate
a, and De, and subsequent o;'s and De,’s until convergence is
achieved.

The eigenvalues are obtained by setting

d.\‘l(o) = l’ P.|(0)= (l + E)v

and evaluating equation (22)

(w(s)) =[®(s,0)1{ W(0)}

us(0)=0

over se[0,1].

Eigen Solutions Corresponding to Axial Excitation

For axial excitation, the perturbed clearance function 4,(7)
is defined from equations (4) and (8) to be

A(T) fR\ dr
=" \L.)as

This excitation is not a function of 8, and neither are the
associated forced-response solutions. Figure § illustrates real
and imaginary reaction-force coefficients resulting from axial
impeller excitation (Childs 1990). Note that ‘‘resonance’’ phe-
nomena are also present in these results.

To obtain eigenvalues and eigenvectors, the following cor-
responding assumed solution is substituted into equation (14)

Uy = l-‘slemv Up = ﬁdlemv 4} =‘61€‘",

and the @ derivatives are dropped to obtain the homogeneous
equations

d !?Jl l:‘sl
=) U +[AJ {da ¢ =0
14 F 4!

214/ Vol. 113, APRIL 1801
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Table 1 Zeroth-order-solution results; C,= 3.5mm, C,=0.36mm
AP ug,(0) = 0.5
tte0(0) 0.5 0.6 0.7
'de 1.655 1.690 1.731 .5 ugy(0) = 0.6 -=mmm=~
m (kg/sec) 4.784 4.391 3.973 Upy(0) = 0.7 ===
3
g
Table 2 Lowest-natural-frequency eigenvalues corresponding to lat- g 4t
eral excitation 2
us(0) | Cr(mm) o wa ¢ Wn £
0.5 .36 -.621 .196 953 651
0.6 .36 ~.288 300 693 416 -
0.7 .36 -.174 .349 .446 .391
0.5 T2 -670 | 175 | 936 | .76 o
0.6 72 -.315 291 T34 429
07 72 -.188 345 | 480 | .302 %
Tabie 3 Second-natural-frequency eigenvalues comresponding to lat- 180
eral excltation; C,=0.36mm
90
tg0(0) c wd ¢ Wn
0.5 -.787 1.2 .549 1.43 .
0.6 —-.344 1.21 273 1.26
0.7 ~.214 123 | .172 | 125 f .
5
-180
.21
-270f
B S S N R SR S-S R R R
g :
= Fig. 8(} i, (s) second-natural-frequency slgenvector corresponding to
3. lateral excitation; C,=0.36mm
g o ug,(0) = 0.5 —— N’ .
Ugg(0) = 0.6 -o==e-r 7.5 ug,(0) = 0.5
.2 ug(c)-OJ---- ________
) 2. ug, (0] » 0.6 /- -,
N . — 17.8 vy, (0) = 0.7--=~= ) \
Oy 1 2 3 .5 3 7 ] 9 -
s o ki
g '
180, §_
uge(0) = 0.5 ———
Ugg{0) = 0.6 ====--
90 -
uge(0} = 0.7 ===~
y
-0k
B A S S S B SR R MR SRS
s % -270} -
Fig. 8(s) &,,(s) second-natural-frequency eigenvactor comspondlng to - "'-.\‘\\
lateral excitation; C,=0.36mm e Nel
~e0F T Tl
where ol ~
B : 0 0
(A= Asw/lUg (Ap+awl)/ug 0| (28) i R R R T N A
Ay~ ugoB+awT Ay 0 s

Flg. 8{d) p(s second-natural-frequency eigenvector corresponding fo

Equation (21) continues to define ihe boundary conditions, lateral excitation; C,=0.38mm
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Table 4 First-natural-frequency eigenvalues corresponding to axial ex-
citation

us0(0) C,(mm) o wd ¢ Wp
0.5 .36 -1.06 478 911 1.16
0.6 .36 —.584 .396 878 706

0.7 .36 —.400 .364 740 541

0.5 T2 -1.12 .505 912 1.23
0.6 .12 -.619 418 .829 746
.07 12 —-.680 .382 .740 .568

and an eigenvalue is obtained when the determinant of equation
(27) is zero.

Numerical Results

Introduction. Figure 6 illustrates the pump-impeller and
shroud geometry used by Bolleter et al. (1987) in their test
program for radial force coefficients. Their tests were at best
efficiency point (BEP) with the pump running at 2000rpm,
while developing 68m of head and 130//sec of flow rate. The
impeller has seven blades and an impeller exit angle of 22.5
deg. The test fluid is water at 80°F. For the present study, AP
across the impeller is assumed to be 70 percent of the total
head rise of the stage. Based on pitot-tube measurements,
impeller exit tangential velogity is about 50 percent of the
impeller discharge surface velocity; hence, 1p=0.5.

Both walls of the annulus are assumed to be smooth and
represented by Yamada’s (1962) turbulence-coefficient test
data: mr=ms= —0.25, nr=ns=0.079. The inlet loss for the
annulus, &, is assumed to be 0.1. The discharge coefficient for
the seal is calculated iteratively as follows. With an assumed
C,e» equations (10) through (13) are used to calculate the leak-
age through the impeller annulus and the pressure and tan-
gential-velocity upstream of the seal. The seal is then analyzed
(with the same equations) using the calculated seal inlet pres-
sure and tangential velocity to determine leakage and C,. The
iteration continues until the leakage predictions for the exit
seal and the impeller annulus agree. Table 1 below provides
zeroth-order solutions.

Eigen Solution Results Corresponding to Lateral Excitation.
Table 2 contains the complex eigenvalues @ = o + jw; =
— tw, + juN 1 = ¢ for the lowest-frequency eigenvalue. Re-
sults are provided for both nominal (C,=0.36mm) and double
radial seal clearances. Observe that the damped natural fre-
quency w, ranges from about 20 percent to 30 percent of run-
ning speed. Starting guesses for the eigenvalues were
a,=0+0.4j, because the lowest-frequency peaks in Fig. 4(a)
are around f=0.4. Observe that the calculated eigenvalues are
entirely consistent with the results of Fig. 4(a); specifically,
the solutions are stable and highly damped, the damping factor
¢ decreases as ugp(0) increases, and both w, and the f value
correspondmg to peaks in the fy, curves decrease as ugp(0)
increases. The results are observed to be relatively insensitive
to changes in the exit-seal clearance.

Figure 7 contains the complex eigenvectors for the
C.=0.36mm. The #u,(s) vector has a peak amplitude at the
inlet and exit with a small phase shift at the inlet. The u,,(s)
magnitude and phase tend to increase steadily with increasing
s. The p,(s) magnitude increases steadily with increasing s until
about s=0.9 and then drops abruptly as it approaches the exit
seal. The sharp change in u,, and p, betweens=0.9ands= 1.0
is caused by the sharply convergent flow path, illustrated in
Fig. 5, as the flow approachcs the exit seal. Note that the phase
of i, is near zero until it approaches the exit and then drops
rapidly. The rapid phase shift at the exit is indicative of the
large energy dnss:panon associated with the exit discharge seal.

Table 3 contains eigenvalues for the second-natural-fre-
quency eigenvector. Again, the damping factor and undamped

natural frequency drop as ug(0) increases. Figure 8 illustrates
the complex eigenvectors for these eigenvalues. Comparing
u,(s) in Figs. 7(a) and 8(a) shows similar mode shapes; how-
ever, the peak amplitudes increase with increasing ug(0) for
the first eigenvector but decrease with increasing uy(0) for the
second eigenvector. The phase of ug,(s) increases for the first
eigenvector with increasing s but decreases for the second ei-
genvector. The p,(s) amplitudes are similar for both the first
and second eigenvectors; however, their phase behavior is quite
different.

Dnhgent searches revealed no eigenvalues with natural fre-
quencies below the first eigenvalue or between the first and
second eigenvalues.

Eigen Solution Results Corresponding to Axial Excitation.
Table 4 contains the first-natural-frequency eigenvector cor-
responding to axial excitation for C,=0.36, 0.72mm. As with
the earlier results of Table 2, the damping factor and undamped
natural frequency both drop as ug(0) increases. Also, the re-
sults are relatively insensitive to changes in seal clearance. The
undamped natural frequencies are higher for this type of mode
shape than for the corresponding lateral-excitation mode
shapes.

Figure 9 illustrates the mode shapes corresponding to axial-
excitation. Comparing Figs. 7 and 9 shows a pronounced dif-
ference for the u,,(s) eigenvectors. For the axial case, u(s) is
real and, in fact, coincides with the u(s) solution. This result
is predicted by equation (28) since u,, is uncoupled from ug,
and p, and satisfies the zeroth-order continuity equation. The
u4,(s) eigenvector magnitudes of Figs. 7(b) and 9(b) are similar;
however, the magnitudes are much larger for the axial-exci-
tation modes. The amplitude curves for p,(s) are similar in
Figs. 7(c) and 9(c); however, the axial excitation cases are much
larger and are relatively insensitive to changes in us0(0).

Discussion of Approach and Results

The eigenvalues presented in Tables 2 through 4 seem to be
entirely consistent with the forced-response curves of Figs. 4
and §; specifically, the natural frequencies generally lie where
they are expected, and they and their damping factors vary
with ua(0) as expected. The eigenvectors of Figs. 7, 8, and 9
are difficult to comment on, given that (to the writer’s knowl-
edge) no one has tried to either calculate or measure this type
of eigenvector in the past. The mode shapes clearly satisfy the
boundary conditions and are consistent with the damped ei-
genvalues to which they correspond.

The homogeneous versions of equations (14) do not (to the
writer) represent an obvious eigenvalue problem, and attempts
to formulate a recognizable eigenvalue problem by conven-
tional means were not successful. Specifically, because the
governing equations (20) are linear, one can differentiate and
substitute to obtain a single third-order equation in one of the
variables. Unfortunately, this approach makes the boundary-
condition implementation very difficult. Moreover, the final
governing equation is itself not amenable to classical eigen-
approaches such as central-difference finite differences; such
approaches have proven to be notably unsuccessful for fluid
mechanics problems. - -

The approach used here to obtam elgenvalues converged
rapidly, but the convergence characteristics suggest that the
convergence space is not convex. Specifically, full correction
steps predicted by the secant algorithm could not be taken.
Generally speaking, correction steps would be reduced by a
factor of ten at the outset. The residual error in |Del, the
magnitude of D,, would then be rapidly reduced until an ov-
ershoot was observed. The problem would then be restarted
at the «a; corresponding to 1Del min, the secant correction
factor reduced by an additional factor of ten, and a further
rapid incremental reduction in |Del would again be realized
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Fig. 98} d,,(s) first-natural-frequency eigenvector corresponding to ax-

ial excitation; C,=0.36mm

until an overshoot was again experienced. By following this
‘‘restart”” approach, the eigenvalues could be calculated to any
accuracy desired. ’

The developed algorithm would appear to be applicable to
a range of fluid perturbation problems where the fluid me-
chanics might have an appreciable influence on ‘*‘acoustics’’;
specifically, in circumferences where convective acceleration,
Coriolis acceleration, and/or centrifugal acceleration terms are
not negligible. It would be adaptable to more strictly numerical
CFD approaches such as the control-volume-based methods
of Patankar (1980).

The eigensolutions which were calculated in this work were,
as specified, stimulated by forced frequency-response solu-
tions. Obviously, more general solutions could be calculated;
e.g., solutions of the form

Ug) = Ugcosnb + ug, sinnb
Ug, = Uy cOSNO + Ug Sinnd
Dy =D cosnd + p, sinnb

with n an arbitrary integer, could be assumed for eigenvalue
solutions. The solutions developed and presented here only
correspond to n=0,1. Also, while the presented solutions cor-
respond to clearance-change excitation due to impeller motion,
these modes could be excited by strictly fluid oscillation.

For axial excitation, Childs’ (1990) work indicates that the
impeller-shroud forces have a negligible influence on pump
vibrations, However, Williams and Childs (1989) demonstrate
that “‘fluid resonance” phenomena can have an appreciable
influence on lateral rotordynamics of pumps.
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APPENDIX A
Perturbation Coefficients

Ay, =01 - ms)+ o (1 - ml/ 2k,

2us, %/bz +{o{mr+ 1B, + ams + l)ﬁl]usolz

2=

dug,
A =7:S‘— + [+ mPo,+ 2+ ms)a lu,/2

-1+ mr)oBo(ug, — N+(l+ ms)aﬁlu“]/z
2A= uso[(1 — mry(ugo— re,+(1- msg,0,)/ By
242 = Ugg(a, + 05) + o{mr+ 1)(uso ~ 1B,
dr

u
+ a,(ms + DugoBy + 2—?‘1 s

2A35=0(tgo— Aimr—(1+ mr)B(ug, — )/ ug)
+ a,uga[ms - (l + "U)Bludo/um]

6o= (ugo— r)/bzuso{ I+ [(uOO-')/busolzl
61 = uOo/bzuso“ + (uﬂo/bu.w)z]
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Influence of Impeller Shroud
Forces on Turbopump Rotor
Dynamlcs

: The shrouded—:mpeller leakage path forces calculated by Childs (1987) have beer

analyzed to answer two questions. First, because of certain characteristics of the
results of Childs, the forces could not be modeled with traditional approaches.

. Therefore, an approach has been devised to include the forces in conventiona.
* rotordynamic analyses. The forces were approximated by traditional stiffness, damp-
_ ing and inertia coefficients with the addition of whirl-frequency-dependent direcr
. and cross-coupled stiffness terms. The forces were found to be well-modeled with
. this approach. Finally, the effect these forces had on a simple rotor-bearing system
© was analyzed, and, therefore, they, in addition to seal forces, were applied to a
_ Jeffcott rotor. The traditional methods of dynamic system analysis were modifiea
. ltoincorporate the impeller forces and yielded results for the eigenproblem, frequency
- response, critical speed, transient response, and an iterative technique for finding

the frequency of free vibration as well as system stability. All resuits lead to the
conclusion that the forces have little influence on natural frequency but can have
appreciable effects on system stability. Specifi caIIy, at higher values of fluid swiri

_ at the leakage path entrance, relative stability is reduced. The only unexpected
_ response characteristics that occurred are attributed to the nonlinearity of the model.

Introduction

The vibration of centrifugal pumps has received increasing
attention recently because of the inability of current analysis
techniques to adequately predict the dynamic characteristics
of pump designs. Failure to accurately predict vibrations has
resulted in the loss of considerable amounts of money in down
time from severe vibration problems. Massey (1985), for ex-
ample, described an eleven-stage pump that became unstable
when its running speed exceeded its critical speed by 25 percent.
In other words, it whirled at 80 percent of running speed.
Another example occurred in the High Pressure Oxygen Tur-
bopump (HPOTP) of the Space Shuttle Main Engine (SSME)
which also whirled at 80 percent of running speed (Childs and
Moyer, 1985).

The hydrodynamic forces generated in many of the fluid-
filled gaps within the pump are well-established contributors
to the problems cited above. This article is concerned specif-
ically with the forces developed along the leakage path between
the impeller and the shroud, as shown in Fig. 1. As the fluid
is discharged from the impeller, some will return to the lower-
pressure, suction side by way of this leakage path. Leakage is
minimized typically with wear ring seals, as shown, Hydro-
dynamic forces are developed along the entire leakage path,

e., the shroud section as well as the seal. Note that these are
only parts of the total force on the impeller and that the
impeller/volute region, balance drums, inducers, shaft, etc.

Contributed by the Technical Committee on Vibration and Sound for pub-
lication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received
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also contribute to the dynamics of pumps, although they are
not considered here.

Unfortunately, measurements of the total force on actual
impellers have typically been obtained using pumps that have
been modified to minimize leakage path forces. However, some
results have been reported that are of importance here. For
example, research at Cal Tech (Adkins, 1976) led to the con-
clusion that the pressures in the shroud annulus contributed
from about 50 percent to 75 percent of the total stiffness acting
on the impeller. The pump used included separation rings and
an enlarged shroud clearance space to minimize leakage flow
forces.

Bolleter et al. (1985) used a rocking-arm mechanism to ver-
tically translate the spinning impeller. Their pump had normal
clearances in the leakage path; and, therefore, the forces meas-

Wear ring seals

i /

I[ntersage scal /

Fig. 1 Typical seal configurations for a muitistage pump
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ured were more realistic. The results demonstrated that the
nondimensionalized cross-coupled stiffness value was about

twice that measured on the pump at Cal Tech (Jery et al.,

1984). This suggests
also reduce the sta

that the leakage path region in pumps can
bility of impeller motion. Bolleter et al.

(1989) have recently presented extensive force-coefficient re-
sults at off-design conditions.

Almost all of the analytic
path forces have been concerned with se
vious techniques in seal analysis (1980, 81,
ly them to the flow within the clearance
e shroud (1987). His work will be used
his article and will now

has extended his pre
82a, 82b, 82c) to app
space surrounding th
to model the seal and shroud forces in t
be summarized.
Childs used a bulk-
equations of the flow ofa
seal problem, three equations wer
cumferential-momentum equations as we

al attempts at predicting leakage
als. However, Childs

flow approach to obtain the governing
differential element of fluid. In the
e required: axial- and cir-
11 as the continuity

equation. In the shroud problem, the axial-momentum equa-

tion was replac
additional terms which descri

ed by a path-momentum equation, introducing
bed the centrifugal and Coriolis

accelerations of the fluid element. After a perturbation ex-

pansion of the equati
relationships were so
quency, Q. Integration
acting on the shaft or shroud yielded the rad
f whirl frequency. In addition, solution
fluid circumferential velocities at
ce. This variable is of primary importance
cross-coupled stiffness). Figure 2 shows the
d problem for three different values of the
leakage path analyzed corresponded
al. (1985) which ran at 2000 rpm.

force as functions o
was carried out at various
the shroud entran
in system stability (
results of the shrou
inlet swirl velocity. The
to that used by Bolleter et

ons in the eccentricity ratio, the resulting
Ived at various values of the whirl fre-
of the resulting pressure distribution
ial and tangential

Figure 3 provides the dimensions of the pump and other data

of importance. The cu
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e coefficients of Fig. 2 are
gal-acceleration mode’’ nat-
(1990) has presented results for damped
es for these modes.

Nomenclature
k* =
C:Eﬁ nondimensional di-
Fo rect damping coeffi-
cient
a=% nondimensionalized L =
0 cross-coupled damp-
ing coefficient
1’5‘,,,=-}r:ﬁ nondimensionalized M= MQws} _
Fy  radial and tangential =T FR
forces on the rotor
Fo=2R,LAP {Childs, 1987X(F) 0 =
Q . . -
=— whirl frequency ratio
s Qo =
R= Eg_g nondimensionalized o)
Fo direct stiffness coef- =7 =
ficient Qo
K* direct stiffness coef- R =
ficient which is a
function of the whirl Rys =
frequency ratio (F/
L)
£ =-k—(2‘2 nondimensionalized l7u./s=;'L: =

cross-coupled stiff-
ness coefficient
(Childs, 1987)
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cross-coupled stiff-
ness coefficient
which is a function
of the whirl fre-
quency ratio (F/L)
length of seal or im-
peller-shroud path
(78]

nondimensionalized
direct mass coeffi-
cient (Childs, 1987)
rotor whirl radius
L)

clearance at leakage
path entrance (L)

clearance ratio

rotor whirl ampli-
tude (L)

inlet radius of
shroud leakage path
or seal (L)

nondimensionalized
tangential fluid ve-
locity at leakage
path or seal entrance

x, ¥y

z=x+jy

sh

none

(inlet swirl ratio)
(Childs, 1987)
rectangular coordi-
nates of rotor center
€

complex rotor whirl
amplitude (L)
complex rotor coor-
dinate (L)

phase angle of whirl
from harmonic exci-
tation

rotor whirl fre-
quency (1/T)
natural frequency of
free vibration (1/T)
shaft speed (1/T)
shroud leakage path
coefficient subscript
rotor coefficient
subscript

seal coefficient sub-
script

shaft coefficient sub-
script

overall coefficient
subscript
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OIMENSIONS 1§
MILLIMETERS

Pump data
shaft speed = w, = 2000 pm
inlet clearance = Q, = 3.55 mm
impeller exit angle = 22.5 °
flowrate = 130 Isec
head developed = 68 m
seven-bladed impeller

working fluid is water at 80 °F

Fig. 3 Dimensions lﬁd data for the pump tested by Bolleter et al (Bol-
loter ot al, 1985)

In the articles cited above, Childs initially suggested the
following conventional, linear relationship to model the forces.
It applies for small motion of the rotor about the centered
position.

E-LE AR 0 (40

If circular whirl at frequency, 9, and radius, Q, is assumed
such that

x=0 cos Qt, 2
y=Qsin ¢,
the radial and tangential force components can be stated
Fl_ {-MP+ca+k
&S e

After nondimensionalizing the terms as defined in Childs
(1987), Egs. (3) become

L r-g-x
g “
Te _Of+E,
q L o ]
where the definitions of the coefficients are included in the
Nomenclature and the other variables are defined as follows.

F

=2R,_+AP' nondimensionalized force

j=2
q‘Qov

nondimensionalized clearance
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f== whirl frequency ratio
F .
E. force coefficient.

The quadratic relationships of equations (4) are to be used to
obtain the dynamic coefficients of equations (1). Specifically,
a least-squares curve fit of the force curves will yield the coef-
ficients. This is an adequate approach for seal forces because
they, in general, do follow a quadratic trend. However, the
curves of Fig. 2 illustrate that shroud forces cannot be ap-
proximated by equations (4); and, therefore, a traditional lin-
ear model as expressed in equations (1) will not adequately
represent the forces. Although these results are unexpected,
experimental measurements made by Franz and Arndt (1986)
of impellers with inducers yielded very similar results.

Problem Definition

At this point, it is not known, assuming the force curves of
Fig. 2 are valid, how they can best be included in traditional
rotordynamic calculations of stability, response, critical speeds,
etc. To solve this problem, the present research has been con-
ducted to answer the following questions.

(/) How can the force curves found by Childs (1987) be
incorporated in the traditional rotordynamic analyses
of system response, stability, critical speeds, etc.?

(2) What effects do the forces have on a rotor-bearing
system with respect to stability, natural frequencies,
imbalance response, etc.?

Before answering these questions, observe that the forces pre-
sent no new problems in a transient analysis because they could
be applied as whirl-frequency-dependent forcing functions to
a simple rotor model such as that developed by Jeffcott (1919).
Although the force components are linearly proportional to
the orbit amplitude, the equations of motion would be non-
linear because the forces depend on the whirl frequency, de-
fined kinematically as
f__ﬂ__&
W, wi(x2+)7)
but this could be handled by integrating the equations of mo-
tion numerically with traditional methods. However, a tran-
sient analysis alone is not sufficient to obtain an understanding
of the forces, and this is why answers to the questions posed
above are necessary. The following section describes the model
used to analyze the shroud forces, and results are then given
for the eigenvalue problem and frequency response, respec-
tively.

&)

Rotordynamic Model

As shown in Fig. 4, the model is a Jeffcott rotor (Jeffcott,
1919) under the application of seal and shroud forces. The
rotor itself represents a double-suction impeller, yielding two
symmetrical leakage paths. In summary, the forces on the rotor
are the shaft stiffness, two identical seal forces, and two iden-
tical shroud forces. The mathematical representation of each
force will now be discussed.

A 90.7 kg (2001b) rotor is assumed. In addition, the shaft
stiffness used (K, = .2987 MN/m) makes the natural frequency
of forward whirl (to be defined later) equal to 80 percent of
shaft speed. This choice is not completely arbitrary since this
frequency corresponds to that observed in the examples cited
in the Introduction (Massey, 1985; Childs and Moyer, 1985).

The scals modeled are smooth, wear ring seals with a clear-
ance and diameter of .36 mm and 236 mm, respectively. The
least-squares approach of Childs described earlier has been
carried out, and the resulting dynamic coefficients are given
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seal forces
r'- flexible shaft 9 ,-_1
= i + — w]
/772 7/
rigid support rigid support
shroud forces

Fig. 4 Jeficott-based, double-suction impeller leakage path model

Table 1 Coefficients for one wear ring seal

ﬁ‘[, M, C. Cy K, k,
kg |Ns/m|{Ns/m | MN/m | MN/m
5 | 3111 |3356.0] 78.6 | .6121 .4628
6 | .3398 |2167.0] B89.6 | .5443 4611
7 | 3714 | 970.9{ 101.3 4755 .4455

in Table 1. The analysis used has at times under-predicted the
true value of the direct stiffness. Therefore, K, is doubled when
the coefficients of the entire model are assembled. This mod-
ification of X, has no influence on the results, since the shaft
stiffness is selected to yield a desired system natural frequency.
As described in the introduction, conventional stiffness,
damping and mass coefficients cannot completely describe the
impeller-shroud forces calculated by Childs and shown in Fig.
2. Therefore, the following method has been devised. First, a
curve fit of the force curves is carried out, yielding dynamic
coefficients which describe the quadratic variation of the forces
with respect to the whirl frequency ratio as described above.
The difference between these curve fits and the actual force
curves is modeled by direct and cross-coupled stiffness coef-
ficients which are functions of whirl frequency ratio. The math-
ematical equivalent of this approach will now be discussed.
The following modified forms of equations (4) express the
method with which the impeller-shroud forces are modeled.

§'=W2-m— (Ro+ R ()]

F,
E-—- =Cuf+lk + k(N ©)

where £* and k* represent the nondimensionalized deviations
between the force curves and the approximating quadratic
expressions. Figure 5 illustrates £* and £*, respectively. Note
that, although they represent forces proportional to displace-
ment, they are not traditional stiffness coefficients since they
are functions of whirl frequency ratio. Separating the force
coefficients into whirl-frequency-independent and whirl-fre-
quency-dependent terms does not introduce any approximation
to the force definitions. Equations (1) are now rewritten as

_ F, _ ML 0 X + C’_ CL X
Fy 10 M[_ y -CL CL )3
+ Ki+K*'(fy ko+k*(f) | \x ™
ke —k*(f) Ke+ KUY | (0

In 2 mathematical sense, the tangential force accounted for
by &* could be modeled as a damping coefficient; however,
the result of Fig. 5(b) confirms the wisdom of modeling the
deviation of the tangential-force coefficient by a whirl-fre-
quency-dependent cross-coupled-stiffness-coefficient. Specif-
“jcally, k* oscillates about zero and approaches zero as the inlet
swirl ratio is reduced. Finally, observe that equations (7) are,
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Table 2 Approximating cosfficients for one leakage path

Mg CL cL K kp
kg |Ns/m|Ns/m |MN/m | MN/m
3.469 | 2037 | 969.9 | .06781 3137

in general, nonlinear differential equations. To understand this
statement, recall that the general definition of the whirl fre-
quency ratio, £, is given in equation (5). If the rotor precession
has a constant radius and rate, fis a constant and the motion
is linear. However, for general motion, f is variable and a
function of the motion.

After performing the asymptotic least-squares curve fit to
Fig. 2, the resulting coefficients of equation (6) are given in
Table 2.

In summary, the following equations represent how the over-
all coefficients for the model are defined.

M=M,+2(M,+M;)

C=2(C,+C)+C

c=2(c+cy) (8)
K=Kn+202K,+K)+2K* =K + 2K*
k=2(k,+k.) +2k* =k +2k*.

Particular coefficients are doubled because there are two
seals and two leakage paths in a double suction pump. The
quantity, C, must be added to the model to yvield reasonable
stability. If the eigenvalues of the overall system are obtained
without adding C, the system is found to be unstable. There-
fore, by adding another damping term (C=10,422 Ns/m),
reasonable stability, which is consistent with operating pump
experience, is ensured. The following equation represents the
complete model used to model the forces on the rotor,

OCTOBER 1991, Vol. 113/ 511



Table 3 Coefficients for overall model

L M C c K k
kg Ns/m|Ns/m | MN/m | MN/m
.5 | 98.240 | 21208 | 2097.1 | 2.8827 | 1.5549
.6 | 98.208 | 18830 | 2119.1 | 2.6115 | 1.5494
7 | 98.361 | 16438 | 2142.4 ) 2.3363 | 1.5184
0
Inlet Swist
Rauo
N
"3' - 7
g
&
3
“-&)"
-80 T : T T
2 -1 0 1 2 3
Whirl Frequency Ratic (ND)
Fig. 6 Real part of the eigenvalues for the forward-whirl mode
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Fig. 7 Imaginary part of the eigenvalues for the forward-whirl mode
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K(f) k(fyiix| _\F,

¥ [ ~k(f) K(f)} {y} = {F,}' @
Table 3 contains the numerical values for this analysis. These
coefficients combine to make the damping for the uncoupled
system, defined by C/2+/KM, equal to 63 percent, 59 percent,
and 54 percent of critical damping for the three swirl ratios
shown, respectively. Again, K* and £* are illustrated in Fig.

S and are defined analytically with cubic-spline curve fits.

~

Natural Frequency Determination
The characteristic equation for Eq. (9) is
M52+ C5+K()P+[S+k())F=0, (10a)

where 5 =s/w,. For each whirl-frequency ratio f, two pairs of
complex conjugate roots of the form

S=0;xjN; Ii= 1,2 (10b)

can be calculated corresponding to forward and backward
whirling modes. The concern here is finding the natural fre-
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Table 4 Natural frequencies of free vibration for the pump modei with
and without K* and k*

UL “n with | =% without | Percent
Wy W

K* and k*| K* and k* | Decrease

5 747 727 2.68%

.6 77 724 6.82%

T .800 715 10.63%

Table 5 Real parts of the eigenvalues for the model with and without
K* and k*

Real part with | Real part without | Percent
i K* and &* K* and k* Decrease
1/sec 1/sec
.5 -55.9 -60.3 7.87%
.6 -31.1 -47.2 51.80%
T -13.8 -34.5 150.00%

quency for forward whirling motion. Figure 7 illustrates the
cigenvalue solutions to Eq. (10a) versus f.

Free whirl of the rotor occurs only when the imaginary part
of an eigenvalue equals the whirl frequency ratio fin Fig. 7;
i.e., Ay=/. The three points at which the \, =/ line intersects
the A(f) curves defines the forward-whirl natural frequencies
for the three inlet swirl ratios. The real part of the eigenvalue
at this natural frequency defines the rotor’s damping.

To find the “*natural frequency’” and damping of free whirl,
the following iterative technique has been used. First, a whirl
frequency ratio is assumed. From this value, the corresponding
values of K and k are obtained from the data shown in Fig.
5 from which the eigenvalues are found using Eq. (10). These
first two steps are equivalent to finding a point on the curves
of Figs. 6 and 7. The imaginary part of the forward-whirl
eigenvalue is compared to the whirl frequency used. If they
are the same, the natural frequency at which free vibration
takes place is defined. If they are different, the imaginary part
of the forward-whirl root becomes the assumed whirl frequency
ratio, and the same steps are carried out until convergence
occurs. Note that this calculation procedure yields the damped
natural frequency for the system.

Tables 4 and S show results of the above algorithm. Also
included are the eigenvalues of the same model neglecting X*
and k*, which correspond to a pure quadratic approximation
of the leakage path forces as in equations (4). The cigenvalues
illustrate at least two important conclusions about the effects
of the values of K* and k*. First, the natural frequency in-
creases when X* and k* are included as well as when the swirl
ratio is increased. The variation of K* in Fig. 5 explains these
observations. More importantly, the percent differences be-
tween the two models show that the values of K* and k* have
very little effect on natural frequency. Second, stability is re-
duced when K* and k* are included and when the swirl ratio
is increased. The variation of k* in Fig. 5 is the cause of these
observations. Finally, the percent differences between the two
models shows that X* and &* can cause appreciable reductions
in relative stability.

To show that the stability and frequency of free vibration
are determined only by the root obtained from the iterative
approach described earlier, the equations of motion (9) were
integrated in a series of transient, free-vibration simulations.
Initial conditions were an initial displacement of .127 mm (.005
in) and velocity equal to R; w, (synchronous whirl). Figure 8
includes the resulting orbit and a time history of the whirl
frequency ratio for free vibration and an inlet swirl ratio of
0.7. As shown, the rotor executed a well-damped spiral orbit.
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Fig. 9 Real part of the sigenvalues for the forward-whirl mode with a
12.5 percent reduction in direct damping

The whirl frequency ratio of the orbit was exactly 0.8, which
corresponds to the natural frequency found earlier. The other
two swirl ratios yield similar results.

To verify that the stability of the model is described only
by the real part of the eigenvalues obtained with the iterative
approach described above, the direct damping coefficient was
reduced by 12.5 percent producing a range of unstable eigen-
values as shown in Fig. 9 where the real part of the forward-
whirl root is positive between whirl frequency ratios of 0.41
and 0.57. The natural frequency of this altered model corre-

sponds to a stable eigenvalue and is .825w,. Integration of the

equations of motion were altered to include a harmonic forcing

function with an amplitude of SN which forced the rotor in a
circular direction at a frequency of .Sw,. Figure 10 includes
the resulting orbit, whirl frequency ratio time history, and a
Fast Fourier Transform (FFT) of the x-coordinate, respec-
tively. Even though the forcing frequency was within the un-
stable range of frequencies, the figures show that the system
was stable in that its orbit did not grow without bound. The
loops and limit cycle behavior are the results of the nonlin-
earities in the model. The FFT shows that the steady state orbit
consisted of response at both the forcing frequency, .5w,, and
the natural frequency, .825w,. Other forcing frequencies were
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also tried. Using a stable value of 0.7w,, for example, the
response did not behave in the same manner; in_st_e_a‘qA_the orbit

reached a steady state circular path at the excitation frequency
as would be expected from a linear system. However, forcing

"at .375w,, the characteristics of the results from forcmg at .Sw,

occurred again, as can be seen in Fig. 11, which again contain

-

the orbit, time history of the whirl frequency ratio and an FFT
of the response. Only forcing frequencies below and within
the unstable zone resulted in this behavior. Only when the
direct damping coefficient was reduced until the natural fre-
quency corresponded to an unstable eigenvalue did the re-
sponse become unstable in a linear sense, where the orbit grew
without bound at the natural frequency. The fundamental
result from this analysis is a verification that a range of whirl
frequencies yielding eigenvalues with positive real parts does
not cause the system response to grow without bound unliess
it includes the system natural frequency. In addition, the non-
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linearities of the system can cause a limit cycle to occur under
certain conditions.

Finally, the critical speed of the rotor cannot be calculated
unless force curves are available at other shaft speeds. In this
case, the natural frequency is calculated with the iterative
method just described, but at 2 number of shaft speeds. A
plot of natural frequency as a function of shaft speed is then
drawn, analogous to ‘‘critical speed maps”’ in fluid-film bear-
ing analysis. The critical speed is defined as the speed where
the natural frequency is equal to the shaft speed.

Frequency Response

As discussed earlier, the following are the equations of mo-
tion of the model

kpiERR e
+[ K(S). k(f)] {x} -F

cos{¢
—k(f) kKN { (n

sinQ¢ {’

AR NIl 44N AATEAEE s,

o

= wuhK* k*
== without K* k*

w
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A
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Whirl Frequency Rauo (ND)
Fig. 12 Frequency response: whirl amplituds
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Fig. 13 Frequency responss: phase angle

where the right-hand side represents a harmonic forcing func-
tion appropriate to frequency response analyses. As in tradi-
tional methods, the transient solution is assumed to decay with
time, and only the steady-state response of the rotor is con-
sidered. Obviously, frequency response solutions are only valid
when the system is stable, precluding the type of response
illustrated in Figs. 10 and 11. The forcing frequency is defined
by @ which has been used to represent whirl speed. Since the
steady-state motion is assumed to occur at the same frequency
as the excitation, this should not cause confusion. Note that
the model is now linear because the whirl frequency ratio and,
hence, the stiffnesses are constant. Multiplying the second
equation by the complex number i, the equations can be com-
bined into one in terms of the complex variable z.

Mi+ (C—ic)z + (K- ik)z=Fe™. (12
Assuming steady-state motion of the following form
z=Ré"®, (13)

where R denotes the whirl amplitude, and ¢ is the phase angle
yields )

R x
F/K [k - M2 + P + (Ca—kp? (14)
[ _k-ca
ke oy ve e £

Equations (14) were solved using the present model data,
and the results for a swirl ratio of 0.7 are shown in Figs. 12
and 13. Also included are the same results for the model with
K* and k* neglected. Again, in obtaining frequency curves as
shown in Figs. 12 and 13, the stiffness terms must be calculated
at the corresponding whirl frequency ratio.

The swirl ratio of 0.7, used in Figs. 12 and 13, exhibited the
largest variation in amplitude and phase at the whirl frequency
ratio of .80, the system natural frequency. An amplitude dif-



ference of about 60 percent is shown between the curves, sug-
gesting that X* and k* have significant influence on the system
primarily at this frequency. The swirl ratios of 0.6 and 0.5
exhibited similar but decreasing results in both the amplitude
and phase curves, having differences in amplitude at the peak
value of 35 percent and 6 percent, respectively. In fact, the
curves were almost identical in the case corresponding to a
swir] ratio of 0.5. Note that these resonance peaks occurred
in all cases at the corresponding natural frequencies found in
the previous section, further verifying the preceding results.
The difference in the response to synchronous imbalance ex-
citation (f= 1) between the two models is small, and this sug-
gests that the leakage path forces have negligible effects on
imbalance response. However, the presence of a subsynchron-
ous excitation near the natural frequency can result in large
increases in response amplitude when k* is included.

Summary and Conclusions

The impeller-shroud forces have been separated into (a) con-
stant (whirl frequency-independent) stiffness, damping and
mass coefficients and (b) direct and cross-coupled added stiff-
ness coefficients which are functions of whirl frequency. With
this approach, the model can be analyzed using traditional
techniques with a few modifications. A new iterative technique
was used in the determination of the rotor’s natural frequency
and damping. The whirl-frequency-dependent stiffness terms
were seen to be convenient and effective models for the im-
peller-shroud force nonlinearities. ’

When the values of the added stiffness coefficients, K* and
k*, were included in addition to the frequency-independent
coefficients, a number of effects resulted. First, the natural
frequency was seen to increase by a small amount, suggesting
that X* could be neglected when only the natural frequency
is important. In addition, the stability is seen to decrease when
k* is included. This effect is appreciable, so stability calcu-
lations should include k°. The frequency response analysis
showed synchronous response to imbalance is increased by the
stiffnesses although by only a small amount. Appreciable dif-
ferences in response due to subsynchronous excitation occur
only at or near the natural frequency and become negligible
at low values of the inlet swirl ratio.

The nonlinearity introduced by the whirl-frequency-de-
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pendency of the force coefficients resulted in limit cycles and
nonsynchronous response in some cases.
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Pressure Oscillation in the
Leakage Annulus Between a
Shrouded Impeller and Its

Housing Due to Impeller-
Discharge-Pressure Disturbances

D. W. Childs

Turbomachinery Laboratories,
Mechanical Engineering Depariment,
Texas A&M University,

College Station, Texas 77843

An analysis is presented for the perturbed flow in the leakage path between a
shrouded-pump impeller and its housing caused by oscillations in the impeller-
discharge pressure. A bulk-flow model is used for the analysis consisting of the path-
momentum, circumferential-momentum, and continuing equations. Shear stress at
. the impeller and housing surfaces are modeled according to Hirs® turbulent lubri-

cation model. In the present analysis, perturbations of the impeller discharge pressure

are used to excite the fluid annulus. The circumferential variation of the discharge
pressure is expanded in a Fourier series up to order n,, where n, is the number of
impeller blades. A precession of the impeller wave pattern in the same direction or
opposite to pump Trotation is then assumed to completely define the disturbance
excitation. Predictions show that the first (lowest-frequency) “‘centrifugal-accel-
eration”’ mode of the fluid within the annulus has its peak pressure amplitude near
the wearing-ring seal. Pressure oscillations from the impeller can either be attenuated
or (sharply) magnified depending on: (a) the tangential velocity ratio of the fluid

entering the seal, (b)

the order of the fourier coefficient, and (c) the closeness of

the precessional frequency of the rotating pressure field to the first natural frequency
of the fluid annulus, and (d) the clearance in the wearing-ring seal.

Introduction

The present work is stimulated by experiences with the SSME
,.HPETP (Space Shuttle Main Engine, High Pressure Fuel Tur-
bopump) wearing-ring seals. A ‘stepped, 3-cavity, tooth-on-
rotor, labyrinth-seal design is used. The stator for the seal is
made from REL-F, a plastic that is somewhat similar to nylon.
In some cases, post-test inspection of the stator element has
revealed that interior points in the stator material have melted
and then resolidified, despite being in contact with liquid hy-
drogen. One hypothesis for this exceptional outcome was that
the material had been subjected to cyclical stresses which gen-
erated heat due to hysteresis. Because of poor conduction
properties of the material, the heat could not be dissipated,
the temperature rose, and melting resulted. ‘*What pressure
oscillations are driving the cyclical stresses?”’, is an obvious
question in reviewing this scenario. The present analysis ex-

amines “‘centrifugal-acceleration’’ modes, arising between the -

impeller shroud and its housing and driven by pressure oscil-
lations from the pump, as an answer to this question.

“The work reported herein was supported by NASA Marshall Space Flight
Center under contract NAS 8-37821; contract technical monitor: James Cannon.

Contributed by the Fluids Engineering Division for publication in the JOURNAL
of FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
August 20, 1990. .
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Figure 1 illustrates an impeller stage of a multi-stage cen-
trifugal pump. Leakage along the front side of the impeller,
from impeller discharge to inlet, is restricted by a wearing-ring
seal, while leakage along the back side is restricted by either
an interstage seal or a balance-piston discharge seal. The pres-
ent analysis considers perturbed flow in the Jeakage paths be-
tween the impeller-shroud surface and its housing.

Prior analyses by the author of those annulli have been
concerned with lateral (1987, 1989) and axial (1990a) reaction
forces developed by the impetler shrouds as a consequence of
harmonic clearance changes due to impeller motion. These
analyses have been based on “‘bulk-flow’’ models which neglect
the variation in the dependent variables across the fluid film.
The model consists of the path and circumferential momentum
equations and the continuity equations.

The analyses cited have yielded force and moment coeffi-
cients due to impeller motion but have also predicted ‘‘reso-
nance” phenomena, which are caused by the centrifugal-
acceleration body forces present in the path momentum équa-
tions. An algorithm was developed (1990Db) to calculate the
complex eigenvalues and eigenvectors associated with these
resonances. In the present analysis, the harmonic response of
the flow within the annulus is examined due to time and cir-
cumferential variations in the discharge pressure of the im-
peller.
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Fig. 1 impeller leakage paths

Fig. 2 Impelier surface geometry

the initial pomt R;, Z; to an arbitrary point R, Z is denoted
by S and defined by

Z/ dR Rf dz\*
S=§z‘ l+(d2) du=Li l+(dR) du (1)

Geometry and Kinematics _.-

Figure 1 illustrates the annular leakage paths along the front -
and back sides of a typical shrouded impeller of a multistage

centrifugal pump. The present discussion concentrates on the

flow and pressure fields within the forward annulus; however, .

the analysis can also be applied to the rear annulus.? As il-

lustrated in Fig. 2, the outer surface of the impeller is a surface

of revolution formed by rotating the curve R = R(Z) about
the Z axis. A point on the surface may be located by the
coordinates Z, R(Z), 8. The length along the curve R(Z) from

ZAlthough the leakage flow is normally up the backside of all impellers except
the last impeller, the governing equations would continue to be valid irrespective
of the flow direction.

path coordmate S and

angular coordinate 8 are used as mclepenﬂe’m spatial variables.

"The coordinates Z, R defining the impeller surfacé are ex-

pressed as parametric functions of S, i.e., Z(S), R(S) The

'length ol' the leakage path along the 1mpeller face is defined

by =

Zi+L
L=
'Z;

dR
1+ ( dZ) du 2)

Governing Equations

Returning to Fig. 2, the path coordinate S and circumfer-
ential coordinate R@ are used to locate a fluid differential

Nomenclature —

AZJ! Als’ AZﬂ» AJO

coefficients introduced in Eq. (12)

b=V,/Rw = nondimensional velocity ratio
Cs = discharge coefficient for the exit wear-
ring seal introduced in Eq. (7)
C; = initial (s = 0) clearance (L)
C, = exit seal clearance (L)
/=Q/w = nondimensional precession frequency
J* = nondimensionalized precession fre-
quency yielding a maximum response
pressure
= I positive, dominant, nondimensional,
(m —n) precession frequency predicted for an
impeller with n; blades in a diffuser
with 7, blades
h=H/C; = nondimensionalized clearance
H = clearance between impeller shroud and
housing (L)
L, = leakage-path length, defined by Eq.
2), )
n = order of Fourier coefficient, intro-
duced in Eq. (13).
p=P/pV? = nondimensional static fluid pressure
Ps(0,0) = prescribed annulus supply pressure
(impeller exit pressure)
Pp.(8,t) = prescribed annulus exit pressure

62/ Vol. 114, MARCH 1992

(impeller inlet pressure)

P = fluid static pressure (F/L?%)
R = radial coordinate (L)
R; = initial (s = 0) radius (L)
r=R/R; = nondimensionalized radial coordinate
R;=2HU./v = path-velocity Reynolds number
§ = path coordinate introduced in Eq. (1),
(L)
s=S8/L; = nondimensionalized path length
T=L,/V; = representative transit time for fluid
traversing the leakage path (7)
u,=U,/V; = nondimensionalized path fluid velocity
‘ug=Uy/Rw = nondimensionalized circumferential
fluid velocity
V; = initial (s=0) path fluid velocity
e¢ = perturbation coefficient
w = pump running speed (T' H
1 = excitation frequenc ?' (rh
p = fluid density (M/L°)
¢ = circumferential coordmate
d,, 0, = normalized friction factors, defined by
Eq. (1)
7=7f = nondimensionalized time
£ = entrance-loss coefficient introduced in

Eq. (7)
v = kinematic viscosity (L*T"")
Overbars denote complex variables; see Eq. (16). Subscripts 0
and | denote zeroth- and first-order solutions, respectively.

IR, 5% A
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element of thickness H(S, 0, r). From Childs (1987), the con-
tinuity equation can be stated

H 2 13 H\ R
9H, 2 19 AR =0 @
o a5 (U YR w"””(k) as G3a)

where U, and Uj are the path and circumferential bulk-velocity
components, respectively. The path and circumferential mo-
mentum equations are stated

3U,  3U, Uy . 3L
KN R AN
+"H(az+ao R Tas V) P

ot 436 R R a5

Following Hirs’ approach (1973), the wall shear-stress defi-
nitions in these equations can be stated

 OR

ms+1

rs="§ pUIRIL +(Up/UDY 2

mr+1

r,,="7’ pUIRT {1+ [(Us— Rw) /U 7

ms+ 1
2

ns 5
7'0:=7 pUgU,R, [1 + (Ua/Us)2]

mr+ 1

ro,="3’pu,(ua—Rw)R?’n+[(Ua—Rw)/U,121 T @)

where
R,=2HU/v (5)

Nondimensionalization and Perturbation Analysis

The governing equations define the bulk-flow velocity com-
ponents (U;, Uy) and the pressure P as a function of the co-
ordinates (Rf, S) and time, r. They are conveniently
nondimensionalized by introducing the following variables

ug=Uy/Vi, ug=Up/Res, p=P/pV}

s=S8/L,, r= R/R, b=V/Rw

T=wl, T=Ly/V; ©)

The present analysis examines the changes in (i;, u, p) due
to changes in the impeller’s discharge or inlet pressure. Fol-
lowing conventional notation, pressure drops at the annulus
inlet and exit are stated

Py(0,0) - P(0,68,1) =p(1 + H)UX0,8,0)/2

P(L,, 8, )= P,(0,0) =pCrU?(L,,8,t)/2 @)

Note specifically that the (upstream) supply and (downstream)
exit pressure are now functions of time. Assume that the os-
cillations consist of a small perturbation of the form

Ps(gvt) =Pw+ePJl(0!t)'Pt(0»t) =P¢0+6P¢l(ovt)

and introduce nondimensional variables to yield the following
zeroth

Po0)=po— (1-£)/2

P(1)=pes+ Caetiz(1)/2 ®
and first-order equations
Ps1 (0»1) i 41 (0’09‘) = ( l + £)uﬂ (0,9,’)

P1(1,0,1) = Py (8,) = Caett oty (1,6,1) ©)
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DIMENSIONS IN
MILLIMETERS
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] Z 7/

Fig. 3 Example impeller; Bolleter ot al. (1987)

The perturbed supply and exit pressures p;, (8,£), p,.(0,t) can
now be specified functions of time and provide excitation for
the perturbed flowfield within the annulus.

Expansion of the dependent variables of Eq. (3) in pertur-
bation equations yields:

Zeroth-Order Equations

(a) Path-Momentum Equation
dp, 1 g_’_’ ugo 9, + 05 1 dh, lﬂ 2 _
ds r (ds) » 2 h, ds rds Uio=0  (100)
(b) Circumferential-Momentum Equation
ditso | Ugo dr -
s + . ds+ [0, (Ugo—r) + a44g,) /2=0 (10b)
(c¢) Continuity Equation
rhgu,, =1 (10¢)
The quantities o, and o, are defined by
os=(Ls/H, )\, Ur=(Ls/Ho)xr (1

where \; and ), are the dimensionless stator and rotor friction
factors:

ms+ 1
A= nsRETL + (go/bug,)?] 2

mr+1

N=nrR {1 + [(ugo—r) /bug )z

The continuity equation has been used to eliminate du,,/ds
from Eq. (10a). The momentum equations define the pressure
and velocity distributions for a centered impeller position. They
are coupled and nonlinear and must be solved iteratively. The
initial condition for u4,(0) is obtained from the exit flow con-
dition of the impeller. Zeroth-order pressure boundary con-
ditions are provided by Eq. (8).

Figure 3 illustrates the pump-impeller and shroud geometry
used by Bolleter et al. (1987) in their test program for radial
force coefficients. Their tests were at best efficiency point
(BEP) with the pump running at 2000 rpm, while developing
68m of head and 1301/s of flow rate. The impeller has seven
blades and an impeller exit angle of 22.5°. The test fluid is
water at 26.6°C. For the present study, AP across the impeller
is assumed to be 70 percent of the total head rise of the stage.
Based on pitot-tube measurements, impeller-exit-tangential ve-
locity is about 50 percent of the impeller discharge surface
velocity; hence, uyp = 0.5.
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Table 1 Zeroth-order-solution results; C; = 3.5mm, C =
0.36mm

5o (0) 0.5 0.6 0.7
Ry 9377 8907 8426
Ce 2.068 2.098 2.130

m (kg/sec) 4.448 4.225 3.997

Table 1 provides the zeroth-order solutions for new (original-
clearance) exit wearing-ring seals. The Ry values on the order
of 10,000 are low in comparison to the circumferential Reyn-
olds number Ry = 2HUp/v which varies along the path, but
is on the order of 250,000. These leakage results were obtained
iteratively starting with guessed values for the seal inlet values
of pressure and tangential velocities and yielding an initial
estimate for Cz. With this estimate for Cg, the leakage is
calculated through the annulus which yields new inlet condi-
tions for the seal, Solutions are ‘‘bounced’’ back and forth
between the seal and the annulus until the same leakage value
is obtained for both flow paths (four-place accuracy).

First-Order Equations
(a) Path-Momentum Equation

9,
2 + Ug A+ U Ass
as

dugs) Ugo Ols) dus,
CLLI . Ml (12
+[wT P +wT Py + Usp % (12a)

() Circumferential-Momentum Equation
1dp
r d

L,
b E +u6|Azg+u5|A39

a7 r a6 as
(¢) Continuity Equation
a_us_n+£%+uﬂ(m+i ﬂe) o
as r o6 rds h, ds

New coefficients in these equations are defined in, Childs

(1987).

+ [wri'fﬂwrﬁ"—" Quso \ \, . a—“ﬂ] =0 (12b)

(120)

Solution Procedure: First-Order Equations

The functions p, (8, 1), Pt (8, f) provide the boundary ex-
citation for the first-order equations. The general form for the
excitation takes the form

P (8,8) =€’ ¥ (py cos nb + py, sin nb)

Dot (8,1) = €™ (Deyc COS N + ey sin nf) 13)

where n can reasonably be expected to vary from zero (plane
wave) upwards through multiples of the number of blades in
the impeller. The form of Eq. (13) suggests that the @ variation
in boundary pressures is defined in an impeller-fixed coordinate
system, which is precessing at the frequency Q.

The 6 and time dependency of the dependent variables is
eliminated by assuming the comparable, separation-of-vari-
able, solution format

u,, = e (13 cos nb + ug, sin nb)

ug, = €/ (ugy. cOS N+ gy sin nb)

p1 =€ (p\. cos nf+ py, sin nf) (19
where the coefficients are solely functions of s, and
f=Q/w (15)

is the normalized precession frequency. Substituting into Egs.
(12) and equating like coefficients of cos né and sin nf yields
six first-order equations in s. Introducing the complex variables

fa 1 \Ini 114 MARCH 1002

T = Upic+JUais Pr=Pictjps  (16)

reduces these real equations to three, complex, ordinary dif-
ferential equations

Uy = Usic + JUsiss

d l_‘s! -asl
= ?, +[A(n, f.5)] %,, =0 (17)
4 14
where
B —jnuwt/r 0
.nb (Ls
[A]= Asp/ug (Ap+TT/ugy —J—— Ri
an TUyg 1
Ay—Bugy+/TT Az,+jT U 0
(18)
1dr 1 dhy Ugo
z-—t4——, I'= -n— 19
rds hy ds w(f " r) 1)

Since there is no right-hand side to Eq. (17), the homogeneous
solution is the complete solution and can be stated as follows
in terms of the transition matrix and initial conditions

U u,,(0)
gy } =% (n, /9] 4ai(0) (20
P p:(0)

The inlet initial condition %y (0) is set equal to zero, and
calculation of %,,(0) and 5,(0) in terms of the specified bound-
ary conditions is the immediate problem at hand. Substitution
from Eqs. (13) and (14) into Eq. (9) yields

P —D1(0) = (1 + )T, (0)

Pi(1) — Doy = Cyetto a1 (1) 2n
where
Esl = Psic +jPs1s
_p_el = Peic +jpels (22)
From Eq. (20)
T;(1) = &11(1)E51(0) + $13(1)P1(0)
Pi(1) =85, (1)T,(0) + ¥53(1)D1(0) (23)

Hence, from Eq. (21) one obtains
[ (1+%) 1 ]
$31(1 - Caettso (DE11(1)  B33(1) = Caettso(1)®13(1)

Esl(o) ﬁsl
X 4§ = ={ 24
{p,(m} {pﬂl @
Inversion of this equation yields

{E,.(O)} _ [zu an] {b’n]
D0 Zy Zn}(Pa

D5, and p,, cannot be specified independently, and a relation-
ship between the two cannot be established without a knowl-
edge of the fluid system beyond the current terminating orifices.
For the purposes of this discussion, the arbitrary choice

531 =1, ﬁtl =0
is made 1o examine the influence of pressure perturbations at

the impeller exit (annulus inlet). The resulting set of initial
conditions for Eq. (20) is then

us(0) Z,
_ = , g (0)=0
[Pl(o)} {ZZI} n(®
The complete solution along the impeller is found by evaluating
Eq. (20) for s€[0, 11.

25)

(26)
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Fig. 4 p(s) complex eigenvector from Childs (1930b); n = 1

Numerical Results. Childs’ (1990b) analysis yields complex
eigenvalues @ and eigenvectors I, (s), s (s), pi(s) for the
system modeled by Eq. (12). Figure 4 illustrates the amplitude
and phase for the first (lowest-natural-frequency) eigenvalue
for n = 1, ug(0) = 0.5, 0.6, and 0.7. Observe that the peak-
pressure amplitudes lie near the wearing-ring seal, which is
consistent with the internally-melted HPFTP wearing-ring-seal
results cited earlier. Forced, harmonic-response solutions de-
veloped in this study due to impeller-discharge-pressure oscil-
lations also show the largest pressure oscillations to occur near
the wearing-ring seal (s = 0.95); hence, results presented here
focus on p7,(0.95). This peak-pressure-oscillation location is
very near the exit-wearing-ring seal of Fig. 3. The first question
to bec a;‘idressed here is, ““How does p,(0.95) depend on n, f,
and C,?”

Figure § illustrates the amplitude and phase of 1,(0.95) versus
ffor C, = 0.36mm, n = 5, and ug = 0.5. As will be explained
later, the choice nn = 5, arises because of the number of impeller
and diffuser blades used in Bolleter et al.’s (1987) pump. The
phase results indicate that numerous resonances exist for po-
sitive values of /. However, only the first resonance experiences
significant amplification. The remaining fluid modes are heav-
ily damped.

Figure 6 illustrates !5,(0.95)! for C, = 0.36mm, n = 5, and
up(0) = 0.5, 0.6, and 0.7. The peak-response frequency in-
creases as Ugo(0) is increased from 0.5 to 0.6, and a secondary
peak appears around f = 2.5. Increasing ug(0) from 0.6 to
0.7 causes an additional peak to appear.

Figure 7 illustrates [5,(0.95)] for C, = 0.36mm, ug(0) =
0.5,and n = 0, 1, 3, 5, and 7. The response is heavily damped
for n = 0, rises sharply as n is increased to one, but then
remains relatively constant as n ranges upwards over 3, 5, and
7. Figure 8 repeats the results of Fig. 7, except for worn clear-
ances; i.e., C, = 0.72mm. Comparisons of Figs. 7 and 8 show
that doubling the clearances reduces pressure amplification and
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Fig. 8 [P,(0.95)] versus f; C, = 0.38mm, n = 5, and u,(0) = 0.5, 0.6,

and 0.7.

slightly elevates the peak-amplitude-excitation frequency f~.
Table 2 shows f* versus n for the new(C, = 0.36mm) and
worn seals(C, = 0.72mm). Note that f * increases more-or-less
linearly with increasing n.

The questions which now arise are: In & real pump, what
value of n is likely to arise in impeller-pressure-discharge pat-
terns, and what precession frequency is most likely to be present
and dominant? Answers to these questions have been provided
by Bolleter (1988), who presents an analysis for the pressure.
waves developed by the interaction of impeller and diffuser
vanes or impeller vanes and volutes. For an impeller with n,
vanes and a diffuser with n, vanes, Bolleter shows that a ro-
tating pressure wave is developed around the impeller exit with
n = |n, — ny) diametral nodes. If n; > n, the pressure wave
rotates in the direction of the pump with the frequency mw/
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Table 2 f* (peak-excitation-amplitude frequency) versus n
for ugn(0) = 0.5

Table 3 Dominant normalized precession frequency /7 * and peak-ex-
citation-amplitude frequency f * versus n, and n,; u(0) =0.5

w N
~
o0 o
e
i

W W

HhiL

[\
AN

e‘e_ _‘ — “ & 4. St
-4.8-2.00.0 2.2 4.0 6.0 B.2 10.2

NONDIMENSIONAL EXCITATION FREQUENCY

Fig. 7 1p(0.95)! versus flforn = 0,1, 3,5,7; C, = 0.36mm, and uy(0)
= 0.5
2.514 n
82.0]
= ]
51 .53
B0
®
a
2.5
. 0 Frrrrrrr e bR
-4.0-2.2 0.0 2.2 4.9 6.0 6,0 10.0
NONDIMENSTONAL EXCITATION FREQUENCY
Fig. 8 [p,{0.95)! versus fforn = 0,1,3,5,7; C, = 0.72mm, and {0}
= 0.5

n. If ny < n, the precessional frequency is — n,w/n. Note that
n, the number of diametral nodes, cited by Bolleter is the same
n used in Eq. (13) for the pressure excitation. Further, in terms
of Eq. (13), @ = x£mw/ln, — nyi. Tyler and Sofrin (1962)
earlier developed this same result in analyzing the noise gen-
erated by the interaction of a rotor and stator in axial com-
pressors of gas turbines.

Bolleter et al.’s pump (1987) used 12 diffuser blades, and
the impeller of Fig. 3 has 7 blades. Hence, from Bolleter (1988),
n=17-121 =5,andQ = —7w/5 = — 1.4w. If the impeller
were mounted in a double volute, n = [7 — 2|1 = 5, and @
= Tw/5 = l.4w. From Fig. § (n = 5, ug(0) = 0.5), ampli-
fication for f = —1.4 and 1.4 is 0.23 and 0.5, respectively.
Hence, pressure disturbances from the impeller would generate
pressure oscillations about twice as large in a double volute as
in a 12-vaned diffuser. However, in either case, because the
predominant frequency is well removed from the peak-am-
plitude-excitation frequency f* = 2.9, impeller pressure dis-
turbances would actually be attenuated by the annulus.

From Bolleter’s equations, and the results of Figs. 5 through
7, significant amplification of impeller-discharge-pressure var-
iations will only arise when the number of impeller blades
exceeds the number of diffuser (or volute) blades, yielding a
positive normalized precession frequency.

S =ny/n=n/(n—-np) 27
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Ry n3 n A (c.-o.;omm) (c.-o.;zmm)
8 1 7 1.14 4.2 44
2 6 1.33 3.6 3.8
3 5 1.80 2.9 3.1
4 4 2.0 2.1 24
5 3 | 287 1.4 1.8
8 2 4 08 0.9
7 1 ] 0.3 0.3
7 1 6 | 116 3.6 3.8
2 5 | 140 2.9 3.1
3 4 1.75 2.1 2.4
4 3 | 233 1.4 1.6
5 2 3.5 0.8 0.9
6 1 7.0 0.3 0.3
6 1 5 1.2 29 3.1
2 4 15 2.1 2.4
3 3 2.0 14 1.6
4 2 3.0 0.8 0.9
5 1 8.0 0.3 0.3
5 1 4 1.25 2.1 2.4
2 3 1.67 14 16
3 2 2.5 0.8 0.9
4 1 5.0 0.3 0.3
4.0
§3.e-
— Cr-
g — 0 36mm
< ---=-0.72mm
~2.0]
B\j ]
s
n1.04
Y S— S A —
-de -2.0 0.2 2.0 4.9 6.0

NONDIMENSICONAL EXCITATION FREQUENCY

Fig. 9 [5,(0.95)| versus f; n = 3, uwl(0) = 0.5; C, = 0.36 and 0.72mm

‘Moreover, for significant amplification within the leakage an-

nulus, /* must lie near f°, the peak-amplitude excitation fre-
quency. Table 3 shows the variation of f* and f* for various
combinations of n, and n,. The case of n; = 8 (eight-bladed
impeller) and n, = 4 (four-bladed diffuser) yields a close prox-
imity of f* = 2.1, 2.4 to f* = 2.0; however, this is an
unrealistic combination. For a practical configuration, the
nondimensional frequencies f* = 1.67andf* = 1.6areclosest
for ny = 5(five-bladed impeller) and n, = 2(double-discharge
volute). Figure 9 illustrates 17,(.95)] for ugp(0) = 0.5 and n
= 3, confirming the predictions of Table 3. An amplification
by a factor of 2.6 is predicted for new clearances and 3.2 for
worn clearances.

Numerical Uncertainty. The numerical uncertainty issue
for the results presented concerns the numerical integration of
Eq. (17). The results presented were obtained with a fourth-
order Runge-Kutta integrator package using 200 integration
steps for the interval [0, 1]. Repeating these calculations with
400 integration steps yielded the same results to about three
significant figures.
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Summary and Conclusions

An analysis has been developed and results presented for
the pressure oscillations in the leakage annulus between a
shrouded pump impeller and its housing. These pressure os-
cillations are driven by a circumferential variation of the im-
peller discharge pressure which can precess either in the same
or opposite to the direction of rotation. The circumferential
variation can be modeled with a Fourier decomposition with
each mode having n diametral nodes across the impeller. The
peak-pressure oscillations within the impeller are predicted to
occur near the exit wearing-ring seal in association with a
centrifugal-acceleration-mode response of the fluid within the
annulus (Childs, 1988, 1990b). The peak-amplitude-excitation
frequency increases linearly with n. Using Bolleter’s (1988)
work which provides a dependency of n and the precessional
frequency on the number of impeller (n;) and diffuser (n,)
blades, situations are presented which can yield large ampli-
fications (or significant attenuation) of impeller discharge var-
iations. The occurrence and nature of the pressure oscillations
are shown to depend on: (@) the tangential-velocity ratio of
the fluid entering the seal, (b) the order of the Fourier coef-
ficient, (c) the closeness of the precessional frequency of the
rotating pressure field to the first natural frequency of the fluid
annulus, and (d) the clearance of the wearing-ring seal.
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The present results suggest an explanation for the internal
melting observed on SSME HPFTP seal parts. However, given
liquid hydrogen's significant compressibility, a more complete
analysis, including fluid compressibility, is in order.
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ABSTRACT

Compressibility Effects on Rotor Forces in the Leakage Path between a Shrouded
Pump Impeller and Its Housing. (August 1993)
Nhai The Cao, B.S., Texas A&M University
Chair of Advisory Committee: Dr. Dara Childs

A modified approach to Childs' previous work (1989,1992) on fluid-structure
interaction forces in the leakage path between an impeller shroud and its housing is
presented in this paper. Three governing equations consisting of continuity, path-
momentum, and circumferential-momentum equations were developed to describe the
leakage path inside a pump impeller. Radial displacement perturbations were used to
solve for radial and circumferential force coefficients. In addition, impeller-discharge
pressure disturbances were used to obtain pressure oscillation responses due to
precessing impeller pressure wave pattern. Childs' model was modified from an
incompressible model to a compressible barotropic-fluid model (the density of the
working fluid is a function of the pressure and a constant temperature only). Results
obtained from this model yielded interaction forces for radial and circumferential force
coefficients. Radial and circumferential forces define reaction forces within the
impeller leakage path.

An acoustic model for the same leakage path was also developed. The
convective, Coriolis, and centrifugal acceleration terms are removed from the
compressible model to obtain the acoustics model. The compressible model is
compared with the incompressible model and the acoustic model. A solution due to
impeller discharge pressure disturbances model was also developed for the
compressible and acoustic models. The results from these modifications are used to
determine what effects additional perturbation terms in the compressible model have
on the acoustic model.

The results show that the additional fluid mechanics terms in the compressible



model cause resonances (peaks) in the force coefficient response curves. However,
these peaks only occurred at high values of inlet circumferential velocity ratios,
Us(0)>0.7. The peak pressure oscillation was shown to occur at the wearing ring
seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes
showed that maximum peak pressure oscillations occurred at nondimensional precession
frequencies (f = (Yo where o is the running speed of the pump) of f = 6.4 and f
= 7.8 for this particular pump. Bolleter's results suggest that for peak pressure

oscxllauons to occur at the wearmg ring seal, the nondimensional excitation frequency

o should be on the order 6f f 2.182 for n = I1. The resonances found in this

research do not match the excitation frequencnes predicted by Bolleter. At the

predicted peak excitation frequencies given by Bolleter, the compressible model shows
an attenuation of the pressure oscillations at the seal exit.
" The compresmblhty of t the ﬂUld ‘does not have a significant influence on the

model at low values of nondimensional excitation frequency. At high values of

nondimensional frequency, the effects of compressibility become more significant. For

the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do
affect the results to a limited extent for precession excitation and to a large extent for

a pressure excitation when the fluid operates at relatively high Mach numbers.



To the memory of my grandfather, Cao Van Tac.
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CHAPTER 1
INTRODUCTION

In the past, wear-ring seals used on the SSME HPFTP (Space Shuttle Main
Engine High Pressure Fuel Turbopump) made from KEL-F plastic came back after
operation revealing highly unusual characteristics. Despite being in constant contact
with liquid hydrogen, post-test inspection showed that interior points in the stator
element had melted and resolidified. The material used in the seal stator has poor heat
conduction properties and high internal hysteretic damping. Pressure oscillations
adjacent to the seal may be a source of cyclic stress producing hysteretic losses. This
investigation will examine the pressure oscillations which may cause cyclic stresses in
the leakage path between the impeller shroud and its housing. Possible sources of
excitation causing the seal to melt and resolidify will be investigated.

For this project, an analysis will be performed for a bulk flow model of the
leakage path between a pump impeller shroud and a housing along the front side of the
impeller, from inlet to discharge (Fig. 1). Simply defined, a bulk flow model
considers only the average of the velocity distribution across the flow field. The
research will be an extension of analyses performed previously by Childs (1989, 1992)
for a shrouded pump impeller and its housing.

The working fluid will be modelled as a barotropic fluid in this analysis, instead
of an incompressible fluid, to account for fluid compressibility. The density and
viscosity of barotropic fluids depend only on the local pressure and are independent of
temperature. This assumption is reasonable for most cryogenic fluids, where viscosity
is low and effects of viscous heating are negligible. The properties of the working
fluid, i.e., density and viscosity, will be implemented into a new analysis by using a
general 32-term, thermodynamic, equations-of-state program, MIPROPS (McCarty,
1986, modified by San Andres, 1991).

This paper is modelled after the ASME Journal of Tribology.
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CHAPTER II
LITERATURE REVIEW

Childs (1989) performed a bulk-flow analysis for the leakage path between an
impeller shroud and a pump housing. Three governing equations of motion were
derived for a bulk-flow model to represent incompressible fluid flow in the leakage
path of a conventional water pump impeller. Three equations, consisting of a
continuity equation, a path-momentum equation, and a circumferential-momentum
equation, were used to solve for rotordynamic forces due to a precessional excitation
of the rotor.

Childs used a perturbation expansion in the eccentricity ratio of the governing
equations of fluid motion for small motions about a centered impeller position yielding
a set of zeroth and first-order governing equations. A zeroth-order solution was
obtained by an iterative procedure to define the leakage, pressure, and circumferential-
velocity distribution. Using a perturbed clearance function due toa radial displacement
perturbation, Childs evaluated the first-order model at several inlet circumferential
velocity conditions to obtain the first-order perturbed solutions.  First-order
perturbation results provided rotordynamic coefficients (direct and cross-coupled
stiffness, damping, and mass) and lateral reaction forces for the model. Childs’
predictions for the impeller of Fig. 2 are shown in Fig. 3. The predicted radial and
circumferential force coefficients are shown versus the nondimensional precessional
frequency for nondimensionalized inlet circumferential velocities of ug(0) = 0.5, 0.6,
and 0.7. Nondimensional precessional frequency is the ratio of the impeller precession
frequency, €, to its running speed, ©. The graphs showed a considerable "dip", or
resonance, in the radial and circumferential force response coefficients at higher values
of us(0). The radial and circumferential force coefficients represent the
nondimensionalized reaction forces acting on the impeller face due to impeller
precession. Childs showed that the centrifugal acceleration terms in the momentum

equations produced the "dip" in the results. By removing the
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centrifugal acceleration term from the path-momentum equation, the "dips" in the plots
were eliminated.

Bolleter (1988) presents a relationship between the difference (n) in the number
of impeller blades (n,) and diffuser vanes (n,) and the precessional frequency for
pressure pulsations in an impeller leakage path. Various combinations of impeller
blade and diffuser vane number causing vibrations and pressure pulsations in the
impeller are described. The relationship presented by Bolleter states that a pressure
pattern develops with n = | n, - n, | diametral nodes around the impeller exit. The
precession velocity of the pressure oscillation is no ,/(| n, - nzb. For example, an
impeller with n, = 11 blades and n, = 6 diffuser vanes would have amplifications of
the pressure oscillations at frequencies of multiples of He/(l11 - 6 h=2.20.

Childs (1992) performed an analysis similar to (Childs, 1989) incorporating the
effects of different numbers of impeller blades and diffuser vanes for the bulk flow
model using excitations due to discharge-pressure oscillations instead of orbital motion.
This analysis considered the harmonic response of flow within the annulus due to
variations in the discharge pressure of the impeller. This analysis also compared the
effect on the response of the pressure oscillation due to different numbers of pump
impeller blades and diffuser vanes. Zeroth and first-order perturbation equations were
also derived for this analysis. However, the first order perturbations in this analysis
were excited by discharge-pressure perturbations instead of impeller precession. The
impeller discharge excitation was defined as a precessing harmonic pressure oscillation
with n nodes and a precessional frequency of Q.

Results from the analysis due to perturbed flow in the leakage path caused by
oscillations in the impeller discharge pressure show that the peak pressure oscillation
occur near the exit ring seal. The pressure oscillations from the impeller were shown
to depend on the circumferential velocity of the fluid entering the seal, the Fourier
coefficient, n, and the relative closeness to the first resonant frequency of the fluid to
the peak precessional frequency of the rotating pressure field. Note that n represents
both the Fourier coefficient used by Childs and Bolleter's n = In, - n, L



Acoustic modes are produced by the interaction of fluid inertia and
compressibility. Thompson (1988) explains that the wave equation, the fundamental
equation of acoustics, is obtained by assuming that the convective acceleration terms

are negligible compared with the temporal acceleration terms. For ordinary acoustic

- analysis, Thompson states that this assumption is "highly satisfactory" for fluid flow

characterized by a low Mach number, typically M? «0.1. By removing the convective,
Coriolis, and centrifugal acceleration terms from a modified general perturbation
(compressible) version of Childs' model, a similar wave equation can be obtained.
This resulting equation, in theory, can be used for an "acoustic" analysis of the flow
fields.

San Andres (1991) developed a solution procedure for a model of fluid flow in
turbulent hydrostatic bearings and annular seals operating with cryogenic barotropic
fluids. He used a 32-term equations-of-state program provided by NBS Standard
Reference Data Base for prediction of the properties of LH,, LO,, LN,, and other
' fluids at different pressures and temperatures. The code, MIPROPS, delivers fluid
properties which are used in the analysis procedure. In addition to obtaining the fluid
properties from MIPROPS for use in a compressible model, San Andres also
considered the properties of the working fluid as a linear function of pressure. From
his results, San Andres found that for highly compressible fluids, such as liquid
hydrogen, the barotropic properties model based on an equation of state gave accurate

leakage and force response for bearings and seals with a large pressure differential.

i



CHAPTER III
OBJECTIVES

This research will introduce compressibility of the working fluid in the leakage
path as an extension to the analyses performed by Childs (1989, 1992). The results
will provide information concerning the relationship between an incompressible, a
compressible, and an acoustic model with liquid hydrogen as the working fluid. The
results will also provide information regarding the cause of the unusual behavior
exhibited by the KEL-F plastic rotor element and verify the validity of Thompson’s
assessment concerning the effects of fluid mechanics and acoustics. This research
project will also analyze the effects of the centrifugal acceleration modes and acoustic
modes of a barotropic fluid in the leakage path between a shrouded pump impeller and
its housing.

The results obtained from a compressible-flow model will be compared with
the results of an incompressible model. The compressible-flow model will also be
reduced to an acoustics model, the results of which will be compared to the '
compressible-flow model. This comparison will be performed for two different
perturbation excitations: (a) a precessional excitation involving an orbital motion of
the rotor, and (b) a pressure oscillation excitation, involving perturbation of the
discharge or inlet pressure of the leakage path. The geometric and operating
characteristics of the first stage impeller of the SSME HPFTP will provide the
parameters used for the governing equations.

A bulk-flow model will be developed and used to simulate the leakage path
inside the first impeller stage of the Space Shuttle Main Engine Turbopump. Results
from the computation should indicate if any interaction exists between acoustic and
centrifugal acceleration modes, and the influence of fluid mechanics terms (convective,

Coriolis, or centrifugal acceleration terms) on acoustic modes.



CHAPTER IV
GEOMETRIC AND OPERATING CHARACTERISTICS

Figure 4 shows the first-stage impeller of the Space Shuttle Main Engine
Turbopump. The impeller measures 0.3048 m in diameter at the exit (leakage path
inlet) and 0.1905 m in diameter at the seal inlet (leakage path exit). The impeller is
also characterized by 24 impeller blades and 13 diffuser vanes. At full power levels,
this stage operates at 34,000 rpm, with an inlet pressure at the entrance to the leakage
path of 13,79 MPa and a discharge pressure of 1.72 MPa at the exit of the wearing
ﬁng seal. Opera'firng' at a pump speedrof 34,000 rpm, the resultant velocity vector of
the liquid hydrogen inside the leakage path is calculated to be about 0.4 times the
acoustic velocity of liquid hydrogen.

The wearing ring seal contains four steps, measuring 0.1915, 0.185, 0.1786,
and 0.172 m in diameter, which accommodate four teeth at the end of the impeller
blade. The radial clearances between the seal and the rotor teeth are estimated to be
0.229 mm (0.009 in), accounting for radial expansion of the rotor during operation.
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CHAPTER V
BULK FLOW MATHEMATICAL MODEL

Childs’ governing equations will be modified for this project to reflect a bulk
flow model operating with a barotropic fluid. As in Childs’ analysis, these equations
will be nondimensionalized and pem;rbed to yield zeroth and first-order governing
equations. R

5.1 General Governing Equations
Using the approach taken by Childs (1989), the governing equations are:

® Conrinuity Equarion

HOR

S+ Z(UH) + 5 (pUat) + 222pU, = 0 §)
® Path-Momentum Equation
® Circumferential-Momentum Equation
_HoP _ fa,+fa,+PH(aU 0U, Uy . U, oy, UeU,Q] 3)
R 38 o 08 R os R d§

An additional governing equation is obtained by using MIPROPS to obtain the
properties of ]iquid' hydrogen.

il
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e Equations of State

p=p(P,T") @

p=p(P,T°)

With the exception of the addition of p to the continuity equation, Egs. (1-3)
are identical to Childs' (1989). The path and circumferential-momentum equations do
not change from Childs' model because the density (p) drops out of the momentum
equations when the continuity equation is used to simplify them.

The equations of state in Eq. (4) define the density and viscosity for the bulk-
flow model. The variation in density of the fluid in the model will be implemented by
assuming that the working fluid is barotropic. Here, the variation in density of the
working fluid will be modelled as a function of pressure and a constant temperature
only. In this investigation, the MIPROPS code calculates the value of density and
viscosity at a constant temperature of 23.37 K with varying input pressures, and
returns values of density and viscosity to the main program. The variation of viscosity
with respect to pressure were very slight; therefore, viscosity was kept constant.

H(S, 6, 1) in the governing equations defines the clearance between the impeller
and the housing. Nondimensionalization of this variable is given in the nomenclature
and also later in this text.

Hir's (1973) definitions were used to define the shear stress components of the
rotor and stator surfaces. The equations shown below define the shear stress acting
on the impeller and its housing. The first subscript in the equations denotes the
direction of fluid flow (path and circumferential), and the second subscript refers to the
surface (stator and rotor), respectively.

ms+l1

_ NS .2 -5
= SURIL+(UUY] 2 )

Ts
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mr+1
1, = l‘zfp UZRI(1 +[(Uy -Rw)Y U} 6)
| msel
t = SPULURIL+UYUS] 2 @
mr+1
T, = ZpUUs - RORI{1 +{(Us -RoYUJ} 2 ®

Reynolds' number used in these equations is represented by,

R, = 2HU)v ©)

Boundary Conditions
The pressure drop of the inlet to the leakage path provides the inlet boundary

condition (s=0) given by the relationship,
P, - P,{0,8,1) = p(1+E)U0,0,6)/2 (10)

The exit wearing-ring seal defines the following exit boundary condition,

P(L,04) - P, == CU (L 04) (11)

These boundary conditions apply directly for precession excitations.
For the analysis which examines the changes in (u,, U, p) due to changes in

the impeller's discharge P, or inlet pressure P,, the following boundary conditions are
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stated for the inlet and exit, respectively,

P.(0,1) - P40,6,0) = p(1+£)Ugf0,8.0)/2 (12)
PL,8:0) - P (01)= £ CU(Ly04) (13)

Eqs. (12-13) differ from Egs. (10-11) because P, and P, are now also functions of

time.

5.2 General Perturbed Equations - Nondimensionalization and Perturbation
Analysis

Introducing the following variables into Egs. (1-8),

u,=UJV, ug=UgJRw, p=PlpV}, p=plp
h=H/C, s=S/L,  r=R/R, (14)
T =W, b=V/Rw, T=LJY,

yields nondimensional governing equations.
The perturbation variables used to obtain zeroth and first-order equations are
defined by,

U =uy+eu,, h=hy+eh, p=p,+ep, 15)
Ug =Ugg * €Uy, P=Py*€P,

where ¢ is the perturbation coefficient to be defined separately below for precession

and discharge-pressure excitation.

5.2.1 Zeroth Order Solution
The zeroth-order equations are the same for the precession and exit-pressure

excitations.
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The path and circumferential velocity distribution and the leakage rate for a

centered impeller position are defined by the following zeroth-order governing

equations.

® Continuity Equation

rhou by = 1

® Parh-Momentum Equation

1% duw_ldr(_uﬂ} RCACAN
b
o Circumferential-Momentiim Equation

di u ir
2-:;;'0 +2-’-i'9% +{0 (4gg=T)*+ G lg] =0

where
g = (Ls/HO)ls’ g, = (Ls/HO)Ar'
nsel
A, = nsR;;,‘[l +(ue°/buso)2] 2

mr+l

b, = mRG{1ug,ryougf)
® Equation of State

p=p(p.T°)

2 Jo

(16)

17

(18)

(19)

(20)

Eq. (19) represents friction factor definitions for the stator and rotor surfaces,

respectively, introduced in Egs. (5-8).
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5.2.1.2 Zeroth-Order Solution

The zeroth-order continuity Eq. (16) can also be expressed as,

du,so _uso[ 1 dh0+ 1 dp0+ 1 dr] (21)

This equation can be substituted into Eq. (17) to obtain

- 2
adny a[1dh 1 d8 1dr -lﬂ(ieﬁ] NALLN
h, ds P, ds rds| rds\b 2

The governing zeroth-order equations now reduce to two governing equations,
consisting of Eq. (18) and Eq. (22). Eq. (20) defines p solely as a function of p and
provides the density used in Eq. (18) and Eq. (22).

Boundary g:ghdigigns
The inlet boundary condition for the zeroth-order pressure relationship can be
expressed from Eq. (10) as,

P
Po0) = —= - (1+8) 23)

Vi

u:,(O)
2

The zeroth-order solutions are obtained by solving Equations (18) and (22)
iteratively. An initial (s=0) fluid velocity V; is estimated which then defines u,o(s).
A specified u,(0) and the calculated p, from Eq. (23) are used to numerically integrate
the zeroth-order equations (18) and (22) from the path entrance (s=0), to the path exit
(s=1). The procedure is continued with revised values of V; until convergence is

obtained between the prescribed and the calculated exit pressure.

5.2.1.3 Zeroth-Order Results
The zeroth-order results provide the mass flow rate through the leakage path.
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The discharge coefficient C,, used in this analysis was obtained by using the leakage
rate through the wearing ring seal. The leakage through the wearing ring seal of the
SSME HPFTP was calculated using a seal leakage code developed by Morrison et al.
(1983), and this value was used to calculate the discharge coefficient at specific
impeller operating conditions. The seal leakage code uses the geometry of the seal
and the operating conditions, i.e., inlet and exit pressures, viscosity, density, etc. to
calculate the leakage rate through the seal. Note that this seal leakage code treats the
working fluid as incompressible.

The seal leakage code yielded several mass flow rates for the prescribed
geometry and operating conditions, depending upon the pressure drop across the
impeller and the wearing ring seal. Several discharge coefficients were tested in the
model to match the flow rate through the impeller leakage path and the flow rate
through the seal. Once the two flow rates converged, the resulting C,, was used in
the model as an exit restriction boundary condition. The mass flow rate through the
seal was found to be 1.6373 kg/s, with the resulting C,, being 7039.6, and inlet and
exit pressure of the seal being 8.101 MPa and 1.72 MPa, respectively. This pressure
drop across the seal represents about one third of the total pressure drop across the '
entire impeller leakage path.

Zeroth-order pressure solutions for the incompressible and compressible models
are shown in Figure 5. The nondimensional path velocity along the leakage path is
given in Figure 6, and the zeroth-order circumferential path velocity is shown in
Figure 7. For the incompressible model, a mean value for the density of liquid
hydrogen inside the impeller leakage path was used to obtain the results shown.

The results of the compressible model vary only slightly from the
incompressible model for the zeroth-order solution. The pressure distribution across
the leakage path shows the same trend and approximaiely the same” magnitude of
pressure drop, but not exactly the same inlet and exit pressure values. The C,, found
earlier provides the exit restriction for the seal and therefore is used for both models.
Because the incompressible model uses an average density along the leakage path, the

inlet and exit densities for the two models will be slightly different. This accounts for
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the difference in the dimensionless pressure magnitudes shown in Figure 5. The
dimensional pressures at the inlet are almost exactly the same value, confirming the
inlet boundary condition. As shown in Figure 6 and Figure 7, the zeroth-order path
velocity and the zeroth-order circumferential velocity are not affected significantly by

compressibility.

5.2.2 First-Order Equations

First-order governing equatxons define the path and c1rcumferent1al veloc1ty and
pressure distribution along the leakage path due to perturbed clearance function or
perturbed discharge-pressure.

First-order perturbation equations obtained by the perturbation expansion of Eq.
(14) are '

® Continuiry Equation

. oh ou oh,
Poge 05*7[ ooz o “°°p°ae}
1 | APokht Poktsify P15ty 1 dr
+Tw{a( as |)+5( a: )+a( las ) To ,ds.(u.sopohx Us Poftg + P hig) =0

(24)

® Parh-Momentum Equation

1 9p, UgqOl,, Ou,

- ou, )
%:E""en’izs*“s k*pr«s+[T“’ 6: +To o0 s as] =hd,, @

® Circumferential-Momentum Equation

Twau°‘+T 0 oy +uau =h
at r o 2a 1o

(26)

bLs apl

r R, p,00

*UgAgg * UgAsgt DAt




21

® Equation of State

9, dp,op, 9P, _db, P 96, _dp, %,

— ] = ’ (27)
ds dp Os ot dp ot ® dp 9

With the exceptions of A, and A, which are defined in the appendix, the parameters
A, A, etc., in these equations can be found in Childs (1989).

The dependency of 5 with respect to s, 7, and 6 in Eq. (24-26) are eliminated
from the governing equations by applying the definitions of Eq. (27). The relationship
between 5 and p in Eq. (27) was obtained from the results produced by MIPROPS.
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CHAPTER VI
FIRST ORDER EQUATIONS AND SOLUTIONS FOR GENERAL
PERTURBED COMPRESSIBLE MODELS

This chapter provides the first order equations and solutions for precession
excitation and pressure excitation cases for the general perturbation (compressible)
models. Results for both excitation cases are presented using an inlet tangential
velocity of u,y(0) = 0.7. The radial and circumferential-force coefficient response
curves represent the nondimensional reaction force acting on the impeller face in the
respective directions versus nondimensional frequency ratio, f.

For the first-order solution analysis, a separation of variable approach was used
to obtain complex ordinary differential equations. The resulting coupled equations
were integrated to obtain the nondimensional radial and circumferential force response
coefficients. The calculated results from the first-order precession excitation and the
pressure excitation of the general perturbed bulk flow model provide predictions which

can be used to qualify and quantify the effects of fluid compressibility in the model.

6.1 Precession Excitation: General-Perturbation Model
The precession excitation of the general perturbed model uses the perturbed

clearance function,

€h, =h, (s,T)cos0 +h, (s,7)sin® (28)

as the excitation,
The theta dependency of Egs. (24-26) can be eliminated by substituting the

following solution format

Uyp = Uy COSO + ums‘ine Ugy =Ug,,COSO + Uy, Sind 29)
P, =p,c0s0 +p, sin p,=p,cos0 +p, sind

into Eqs. (24-26), which yields six real equations.
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Three complex equations in the independent variables s and T can be obtained

by introducing the complex variables

u,] =Ug1c *JUge um “Ugic ML TPy 9-1 “Pic *JPys

(30)
R =P\ tiPie B =Bty
These complex equations in the independent variables s and T are
Byt _ jof, +ufl Oy , 18  10r| 5 |%0 % 0T,
as' 1 "h as po O r os b 05 B
“’po‘ap fﬂan“= h Yso Sho . joT, _or %, fﬂah‘
podpat By Os hEas  Thy | By O hy O
(31)
1 %2, . 32
_p.;_ﬂ(oA +usf43’+p_A + -jTo—U uso-—a;—]—blA (32)
bL 2, Oty ... U Oty | _ 33)
-7§;6—+MNA”+HJIA3O+Q_A To——-ij—r—-uel+u,o = =hA,,

Since the equation of state is a function of pressure and a constant temperature only,
it can be modified as shown in Eq. (27) and used to remove the dependency of p, from
s in Eq. (31). Further simplification of Eqs.(33-35) can be made by using the
following definitions provided by Childs (1989)

L)dz
eh, S_Q(T,)E (34)
3
e_j“_u_ L)dz (35)
as L,)ds?
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where

q=x+jy (36)

Eq. (36) represents the physical motion of the rotor in the x and y directions, shown

in Figure 1.
Assuming a harmonic seal motion of the form

q9=q,%, f-0lo 37

the corresponding harmonic solutions can be stated,

u, =u,e”, u =uyel, p =pel (38)

which yields the following three complex ordinary differential equations of motion,

U Ui 8
d)= = 9o (39)
—_—t U + U S —
e _Bl [ -ex (e) 3}
Py p 83
where
: dpo(uydp, joTu s, |
4y "'19—7"‘412 B Po{_,‘;; 0,2 — “’T—eg'”‘xs
r ds(ﬁo ds Po” ds
A A, TT dp, . bL
[A] = |23 T2, 07 Ao (40)
U Uyp Uso ds " MigPoR,
A, A.dp
Ay 43 .—“'.—33&
Po Py ds

ey
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M bog ,p , TTde
5 Bo dpy * hy ds
& = (%) ) _& ﬂ f @1
g s ds uy,

\ G‘I

Elements used in Egs. (40-41) can be found in Appendix A.

6.1.1 Boundary Conditions

Nondimensional first-order boundary conditions for the precession excitation can

be stated from equations (10) and (11) as

P,(0) —
=—(1+ 0
(1+g1+5)1f1|) Hromd @
2 dp 0
p1 -
pil) =C o 1), (1) @3)

(1+.(1_+_Elg£|]
2 dp'!

Additionally, the perturbation entrance circumferential velocity can be stated as zero,
Ug,(0)=0 (44)

The solution to this set of equations is obtained by applying the procedure
presented by Childs (1989). The solution procedure used to determine the reaction
forces and moments are also given by Childs (1989).

6.1.2 First-Order Results
Radial and circumferential force response coefficients for general compressible
and incompressible precession excitation models operating with an inlet circumferential

velocity of ug(0) = 0.7 are shown in Figure 8 and Figure 9. The results
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Figure 8 - Radial response for compressible and incompressible models for precession

excitation for u(0) = 0.7
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show that the effects of compressibility do not affect the results of the model to a
great extent over the frequency range considered. As with Childs’ results, local
resonance peaks occur in the response curves. Two local peaks occur in the response
curves, at nondimensional frequency ratios of f = 0.1 and f = 0.8. For low inlet
values of circumferential velocity u,(0) = 0.5, the behavior of the response curves
of the compressible model is virtually the same as the results shown for an
incompressible model shown by Childs (1989), i.e., the resonance in the response
curves diminish at lower values of inlet circumferential velocity.

Complex first-order pressure, path velocity, and circumferential velocity for
different nondimensional excitation frequencies along the leakage path produced from
the first-order perturbanon anaJys1s prov1de approximate complex modes at the
resonant frequencies. The real and imaginary parts of these results are used to obtain
amplitude and phase plots at the resonant frequencies. Amplitude and phase plots of
first-order nondimensional pressure in the leakage path at the frequency ratios of f =
0.1 and f = 0.8, where the local peaks occur, are shown in Figures 10 and 11.
Complex modes for u,; at the same frequency ratios are shown in Figures 12 and 13.

At the frequency ratio of f = 0.1, the amplitude of the pressure along the
leakage path steadily increases and has a maximum value at the exit of the leakage
path. For the frequency ratio of f = 0.8, the maximum pressure amplitude occurs
near the middle of the leakage path. The mode shape for u,, at f = 0.1 shows a
slightly decreasing amplitude along the leakage path, with a minor increase in the
amplitude at the exit. As with the mode shape for the pressure dlstnbutxon at f =
0.8, the maximum magnitude occurs nea: the middle of the seal.

As wnh Childs’ model, the resonant peaks found in this analysis can be
attributed to the centrifugal acceleration terms. When the centrifugal acceleration
terms are removed from the model, the local peaks in the response curves diminish
significantly. The mode shapes at f = 0.8 do not support the theory that maximum
pressure oscillations at the leakage path exit are causing the seal to melt because the

maximum amplification occurs near the middle of the leakage path.
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Noticeable effects of compressibility upon the model can be seen at higher
nondimensional frequency ratios. Figure 14 shows the response curves of the
compressible and incompressible models for high frequency ratios. The force
responses of the incompressible model continue to grow with increasing f, while the
results of the compressible model exhibit peaks corresponding to the natural
frequency. This is consistent with classical vibration analysis, with the incompressible
model having no natural frequency due to an infinitely high bulk modulus, while the
compressible model has a natural frequency corresponding to the compressibility of

liquid hydrogen in the model.

6.2 Pressure Excitation

This part of the research involves introducing a time and circumferentially
varying impeller discharge pressure to the compressible model. With different
excitations involved in this model, new boundary conditions also exist. The pressure
perturbation takes the form of the following equation.

® Supply Pressure-Excitation Perturbation

P8,f) = P,,+€P,,(6,) 45)

The occurrence of epsilon in this equation represents the perturbation coefficient for

discharge-pressure excitation.

6.2.1 First-Order Equations

Nondimensionalization and perturbation of the general governing equations (6-
8) yields the same governing equations for pressure excitation perturbation as for
precession excitation governing Egs. (31-33), except with A, = 0 for this model.
Therefore, the first-order governing equations for pressure excitation will not be

presented in this section.
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6.2.2 Boundary Conditions

Nondimensionalization and perturbation of the boundary conditions introduced

in Eq. (12-13), the first-order boundary condition can be stated as

P,6.)-p 0,8, =(1 +F.)u,,(0,e,:)(1 L1+ dp |0)

2 4
i (46)
1+§)dp
Py(1,6,0) - p,(0,8) = Cpu (1) ,(1,9,:)(1 +£——2—Qd—; Il)
p.1(0,t), p.;(6,1) provide the boundary excitations and take the form,
P,(6:1) =€’ (p,; cosnd +p,, sinnb) @&n

.0, =e/¥p,, cosnb +p,, sinnb)

6.2.3 First Order Solution
The theta and time dependency of the first-order pressure excitation governing

equations is eliminated by assuming

u,y = el u;, cosnd +ug, sinnb)
Uy, = el (ug, cOSNO + U, Sinnb) (48)

p, =ef(p,cosnB +p, sinnb)

where n represents the difference of number of impeller blades and vanes, also defined
as the number of diametral nodes (Bolleter). Substitution of Eqs. (48) into the first-
order pressure excitation governing equations, equating coefficients of cos nf and sin
né, and using complex variables described in Eq. (30) reduces the real equations to

three, complex ordinary differential equations

1 Us)
Uy, [ +[B(S.S)N Uer( =0 (49)

kY

4
k—

P 51
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where
; dpo(udp, jnwTu dp
B” _anT..Bu - po( ’odpo-f-'] - 60 +janﬁ+Bl3
r dsl pids  Por ds
A A dp bL
[B] = |2 20 JIT Ay p°-j ) (50)
By Upg Uy ds " rugpoR;
A, By dp
B, B;, 3 B a5
Po Po

Eq. (49) differs from Eq. (40) in that Eq. (49) is now a function of n with i, = 0.
These equations are solved using the method presented by Childs (1992).

6.2.4 First-Order Results
Results from the Efgsis'ure excitation perturbation ahalysis using a difference of
impeller blades and vanes (n) is presented in this section. Since the SSME HPFTP
wearing-ring seal is located at the end of the leakage path (s = 1), the results from
this section will concentrate on this area of the leakage path. The pressure-oscillation
response at the end of the leakage path versus nondimensional excitation frequency
corresponding for n = 11 is illustrated in Figure 15. The value of n = 11 is used
because, as mentioned previously, the SSME HPFTP has 24 impeller blades and 13
diffuser vanes, for a difference of 11. Bolleter (1988) explains that the dominant
pressure pattern to be expected for this arrangement would have 11 diametral nodes.
This is important because it is the value used as n in Eq. (48). Figure 15 shows that
the peak pressure oscillation at the exit of the impeller leakage path (s = 1) occurs at
a nondimensional frequency of about f = 6.4 and f = 7.8. Bolleter predicts that the
peak pressure oscillation should occur as a function of the difference in the number

of impeller blades and vanes, presented in Tables 1 and 2.
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Figure 15 - Pressure oscillation response of compressible model for pressure
excitation for n = 11 at leakage path exit (s = 1) and ,«(0) = 0.7
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The resonant frequency ratios at f = 6.5 and f = 7.8 clearly are not functions
near the predicted excitation frequencies provided in Table 2 for n = 11. None of the
other cases tested yielded results which correspond to the values shown in Table 2 for
the respective value of n. These results reveal that amplification of peak pressure
oscillation does not occur at the expected frequency ratio. At the predicted frequency
ratios, the cases tested for this model showed that an attenuation, rather than an

amplification of the pressure waves occurred.

Table 1 - (n; - n,) for various combinations of multiples of impeller blades and vanes

nz\ n, 24 48 96

13 11 35 83
26 -2 22 70
39 -15 9 57

Table 2 - Expected peak nondimensional frequency ratios, f or, {n/(n, - n,)}, for
various combinations of multiples of impeller blades and vanes

nz\ n, 24 48 96
13 2.18 1.37 1.16
26 -12.00 2.18 1.37
39 -1.60 5.33 1.68

Amplitude and phase plots (Figures 16 and 17) of the pressure oscillation for
the two resonant frequency ratios found for n for the compressible pressure excitation
model show that the peak pressure oscillation occurs at the exit of the leakage path.
This result heips to suppon:tﬁé hyﬁsthesis that pressure 7c;gci11ations at the leakage path
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exit are causing the seal to melt. However, the result does not provide enough
evidence to provide a very plausible explanation for the behavior exhibited by the
wearing ring seal.

The response of the compressible model for other values of n is plotted in
Figure 18. The graph shows the relationship of the peak pressure oscillation response
to the number of diametral nodes. The nondimensional excitation frequency ratio at
which the peak pressure oscillation occurs increases as the number of diametral nodes
increase, consistent with Childs’ analysis (1992). However, unlike Childs’ results,
where the magnitude of the peak amplitude stays relatively constant, regardless of n,
the results produced from the compressible model show that the amplitude of the
pressure oscillations increases as n increases. The effects of added compressibility to
the results of this model is greatly enhanced compared to results of the precession
excitation model. But, as with the precession excitation analysis, the influence due to

compressibility effects is only noticeable at higher nondimensional frequencies.
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CHAPTER VII
FIRST ORDER EQUATIONS AND SOLUTIONS FOR ACOUSTIC MODELS

For acoustics analysis, the temporal acceleration terms are the only acceleration
terms which remain from the set of general governing equations. A highly reasonable
assumption may be made that the contributions from the convective, Coriolis, and
centrifugal acceleration terms are negligible compared to the temporal acceleration
terms in the realm of ordinary acoustics (M? « 1) (Thompson, 1988). However, due
to the high Mach number with which the working fluid in the SSME HPFTP operates
M = 0.4), the general perturbétion fluid model and the acoustic model must be
compared to investigate the effects of the convective, Coriolis, and centrifugal
acceleration terms in an acoustic analysis.

The zeroth-order solution for the acoustics models do not change from the
previous results obtained because the zeroth-order equations and solution remain the

same .

7.1 Precession Excitation Model

7.1.1 First Order Equations

First-order governing equations for the acoustic precession excitation model can
be obtained by removing the effects of fluid mechanics, i.e., the convective, the
Coriolis, and the centrifugal acceleration terms from the general perturbation governing
equations given in 5.2.2, Eqs. (24-26). Removing the convective acceleration terms,
usdug/ds udu/ds, the Coriolis acceleration term, 2u,dr/rds, and 2uedr/(b’rds),
representing centrifugal acceleration, from the continuity Eq. (24) yields the first-order
governing acoustic continuity governing Eq. (51). The first-order governing acoustic
equations for the path and circumferential momentum are obtained by removing the

convective acceleration terms from Eqgs. (25-26).
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® Continuiry Equation

_ Oh, . 0p, N [ a(Po“so AP oh ) a(“.‘oho -0 (51)
oo th !
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® Parh-Momentum Equation

1 op,

=y A, +u
po as o1 S.

(52)

® Circumferential-Momentum Equation

b L, op, . Oug,
';Eg—oge' *UgAget UgAsgt Didye T“’"é'r- =hA,, (53)

7.1.2 First-Qrder Precession Excitation Solution

The theta dependency of Egs. (51-53) can be eliminated by substituting the
solution format presented in Eq. (29). The three resulting complex equations in the
independent variables s and 7 after introducing the complex variables of Eq. (32) are

® Continuity Equation

My _joT, (13 13 140k oT,
) as ruﬂl slhoas 50& lhzas horeo 54
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T Uy 9P
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® Parh-Momentum Equation
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® Circumferential-Momentum Equation

P _
TR +“m“iza““‘_gf“:«xe"f?-Ae.a“T“’—l =hAg (56)

Assuming the harmonic seal motion described in section 6.1, Eq. (38), the three

governing equations reduce to two differential equations of motion of the form,

R

where
.u_ﬁ.@G +F2+j£I_d_z_-jmT Al_e ]
{87} ) (L]‘ P dp T T hds T T (e o) (58)
8s L G - AAe
{ T AprieT)

The [C] matrix elements are given in Appendix C.
The du,,/ds term has dropped from the governing equations and thus 4, can

be solved directly without integrating the partial differential equations, yielding,

Ug =

b L, dp .
hAg -t Az * ("-r"R_;; - 7’% 40}’1]/ (A tjw T0) (59)

Results to these equations are obtained using the same solution procedure and
boundary conditions described for the first-order precession excitation equations in
section 6.2.2. The solution to these sets of equations can then be used to calculate the
force and moment coefficients in the impeller leakage path for the acoustic case where

classical acoustic assumptions are made.

-2
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7.1.3 First-Order Results

The nondimensional radial force coefficient responses for the general
perturbation and acoustic cases are shown in Figure 19. The response curves for the
circumferential force ébéfﬁciehts are shown in ”Figrure 20. The response curves for
the acoustic case are léés erratic in behavior, and the peaks exhibited by the
compressible model totally disappear. This shows that the convective, Coriolis, and
centrifugal acceleration terms do affect the results of the compressible model to a
considerable extent at low frequencies. Childs (1989) correctly predicted that the
centrifugal acceleration terms caused the resonance in the response curve. Although
the results of ther two”rrrxodels do not differ quantitatively, the trend exhibited by both
models are similar, as evidenced by Figures 20 and 21.

At higher values of nondimensional frequency, the effects of removing the fluid
mechanics terms from the model is shown in Figure (21). The two models show
about the same results. The natural frequency of the acoustic model is slightly lower
and the peaks are sliiigihtrly higher. Mode shapes for pressure oscillations at f = 11.5
and f = 12 are shown ianigures 22 and 23. The mode shapes show that, at these
frequencies, the pressure oscillations are not the cause of the uncharacteristic behavior
of the exit wearing ring seal due to a precession excitation. The mode shapes do not

show conclusively that the pressure oscillations are occurring at the exit of the seal.

7.2 Pressure Excitation Model

7.2.1 First-Order Equations

The equations obtained for the first-order acoustic pressure excitation
perturbation use the same procedure as for the first-order acoustic precession
excitation shown in section 7.1.1. The boundary conditions and perturbation
excitation are defined by the equations used for the general first-order pressure
excitation solution given in section 6.2. The resulting governing equations for
pressure excitation of the acoustic model are the same as those given in section 7.1.1,
except with A, being zero, analogous with the results obtained for the pressure

excitation equations for the general perturbation model.

[ Ry



- - - fr~compressible
— - fr—acoustic

-

Nondimensional Force Response
~

\
-0 | T |
-1 0 1 2

Nondimensional Frequency (f)

47

Figure 19 - Radial response for acoustic and compressible models for precessional

excitation for u,,(0) = 0.7
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Figure 20 - Circumferential force response for acoustic and compressible models for
precessional excitation for u,(0) = 0.7
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7.2.2 First-Order Pressure Excitation Solution

Using Eq. (48) to eliminate the theta and time dependency from the first-order
pressure excitation of the acoustic model and using the pressure'excitation perturbation

described in Eq. (45), the resulting governing equations can be represented as,

u u
4l =0 (60)
ds|p, py
Where elements of [D] are provided in Appendix D.
In addition to h, being zero, Eq. (60) also is a function of n, unlike Eq. (57).

7.2.3 First-Order Results

Comparison of the general perturbation model and the acoustic model for n=11
shows that the peak pressure amplification around f = 7.8 displayed by the general
perturbation model almost totally disappears for the acoustics model. From Figure 24,
the results for the acoustics model show that no amplification of the pressure
oscillation occurs, but rather, an attenuation of the pressure oscillation at all frequency
ratios. It can be concluded from this result that the convective, Coriolis, and
centrifugal acceleration terms contribute significantly to the results of a bulk flow
model when a pressure excitation is used as the perturbation parameter of the bulk
flow model. The results here also differ with respect to the location of the resonant
peaks in the nondimensional frequency range tested. For the acoustic model, the local
peaks do not match with those of the compressible model.

The sharp peak of the pressure amplitude near a frequency ratio of f = 0.0 is
inherent in all the models (compressible, incompressible, and acoustic), shown in
Figure 25. The phenomenon causing this resonant excitation is not yet understood and
cannot be explained. However, the fact that this resonance occurs in all three models
explains that neither the compressibility or the acoustics effects of the models affects
this resonant frequency. Also, the fact that the frequency at which resonance OCCUTS

is near f = 0.0, indicates that this peak could be the response to a free vibration of
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the fluid inside the leakage path.

Figure 26 shows the first-order pressure response for multiple cases of n. The
frequency responses due to different n show no quantitative trend with respect to n.
Unlike the compressible model, where the pressure response showed a definite,
noticeable response to different n, the acoustic model shows little quantitative and

qualitative response to different n value.
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CHAPTER VIII
SUMMARY AND CONCLUSIONS

A modified approach to Childs' previous work (1989,1992) on fluid-structure
interaction forces in the leakage path between an impeller shroud and its housing is
presented in this thesis. Three governing equations consisting of a continuity, path-
momentum, and circumferential-momentum equations were developed to describe the
leakage path inside a pump impeller. Radial displacement perturbations were used to
solve for radial and circumferential force coefficients. In addition, impeller-discharge
pressure disturbances were used to obtain pressure oscillation responses due to
precessing impeller pressure wave pattern. Childs' model was modified from an
incompressible model to a compressible barotropic-fluid model (the density of the
working fluid is a function of the pressure and a constant temperature only). Results
obtained from this model yielded interaction forces for radial and circumferential force
coefficients. Radial and circumferential forces define reaction forces within the
impeller leakage path.

An acoustic model for the same leakage path was also developed. The
convective, Coriolis, and centrifugal acceleration terms are removed from the
compressible model to obtain the acoustics model. The compressible model is
compared with the incompressible model and the acoustic model. A solution due to
impeller discharge pressure disturbances model was also developed for the
compressible and acoustic models. The results from these modifications are used to
determine what effects additional perturbation terms in the compressible model have
on the acoustic model.

The results show that the additional fluid mechanics terms in the compressible
model do cause resonances (peaks) in the force coefficient response curves. However,
these peaks only occurred at high values of inlet circumferential velocity ratios. The
peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of

impeller discharge disturbances with n diametral nodes showed that maximum peak
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pressure oscillations occurred at nondimensional excitation frequencies of f = 6.4 and
f = 7.8 for this particular pump. Bolleter’s results suggest that for peak pressure
oscillations to occur at the wearing ring seal, the nondimensional excitation frequency
should be on the order of f = 2.182 for n = 11. The resonances found in this
research do not match those predicted by Bolleter. At the predicted frequencies given
by Bolleter, the compressible model shows an attenuation of the pressure oscillations
at the seal exit. This does not provide a plausible explanation for the unusual behavior
exhibited by the wearing ring seal.

The compressibility of the fluid does not have a significant influence on the
model at low values of nondimensional frequency. At high values of nondimensional
frequency, the effects of compressibility become more significant. For the acoustic
analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the
results to a limited extent for a precession excitation and a large extent for a pressure

excitation when the fluid operates at relatively high mach numbers.



59

REFERENCES

Bolleter, U., 1988, "Blade Passage Tones of Centrifugal Pumps", Vibrations,
Vol. 4, September, pp. 8-13.

Childs, D. W., 1989, "Fluid-Structure Interaction Forces at Pump-Impeller-
Shroud Surface for Rotordynamic Calculations," ASME Journal of Vibrations,
Acoustics, Stress, and Reliability in Design, Vol. 111, July, pp. 216-225.

Childs, D. W., 1992, "Pressure Oscillations in the Leakage Annulus Between
a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure
Disturbances," Journal of Fluids Engineering, Vol. 114, March, pp. 61-67.

McCarthy, R. D., 1986, "Thermophysical Properties of Fluids, MIPROPS 86,"
NBS Standard Reference Data Base 12, Thermophysics Division, Center for Chemical
Engineering, National Bureau of Standards, Boulder, Colorado.

Morrison, G. L., Rhode, D. L., Logan, K. C., Chi, D., Demco, J., 1983,
“Labyrinth Seals for Incompressible Flow - Final Report," G. C. Marshall Space
Flight Center, MSFC, Alabama, 35812, Report Number SEAL-4-83, November.

San Andres, L., 1991, "Analysis of Turbulent Hydrostatic Bearings with a
Barotropic Fluid," Transactions of the ASME, ASME Journal of Tribology, pp. 1-10.

Thompson, P. A., Compressible Fluid Mechanics, Department of Mechanical
Engineering, Rensselaer Polytechnic Institute, Troy, New York, 1988, pp. 159-163.

Thomson, W. T., Laplace Transformations, Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1960, Second Edition, pp.181-201.



APPENDIX A

u2
50
A=

4 2np,

[o,(ueo - ynr+ O;"ao”’-’]

2

A,= u“i (amr + o ns)
2hopyg

Coefficient definitions for [A] Eq. (40)
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APPENDIX B

Coefficient definitions for [B] of Eq. (50)
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APPENDIX C

Coefficient definitions for [C) of Eq. (57)
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APPENDIX D

Coefficient definitions for [D] of Eq. (60)
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